Shawn001's picture
Upload 131 files
23bd7af
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference API."""
import torch
from megatron import mpu
from .communication import broadcast_float_list
from .generation import (
generate_tokens_probs_and_return_on_first_stage,
score_and_return_on_first_stage,
beam_search_and_return_on_first_stage)
from .tokenization import (
tokenize_prompts,
detokenize_generations)
def generate_and_post_process(model,
prompts=None,
tokens_to_generate=0,
return_output_log_probs=False,
top_k_sampling=0,
top_p_sampling=0.0,
top_p_decay=0.0,
top_p_bound=0.0,
temperature=1.0,
add_BOS=False,
use_eod_token_for_early_termination=True,
stop_on_double_eol=False,
stop_on_eol=False,
random_seed=-1):
"""Run inference and post-process outputs, i.e., detokenize,
move to cpu and convert to list."""
# Main inference.
tokens, lengths, output_log_probs = generate(
model,
prompts=prompts,
tokens_to_generate=tokens_to_generate,
return_output_log_probs=return_output_log_probs,
top_k_sampling=top_k_sampling,
top_p_sampling=top_p_sampling,
top_p_decay=top_p_decay,
top_p_bound=top_p_bound,
temperature=temperature,
add_BOS=add_BOS,
use_eod_token_for_early_termination=use_eod_token_for_early_termination,
stop_on_double_eol=stop_on_double_eol,
stop_on_eol=stop_on_eol,
random_seed=random_seed)
# Only post-process on first stage.
if mpu.is_pipeline_first_stage():
tokens, prompts_plus_generations, prompts_plus_generations_segments = \
detokenize_generations(tokens, lengths, True)
if return_output_log_probs:
output_log_probs = output_log_probs.cpu().numpy().tolist()
for i, (prob, seg) in enumerate(zip(output_log_probs, prompts_plus_generations_segments)):
output_log_probs[i] = prob[:len(seg)-1]
return prompts_plus_generations, prompts_plus_generations_segments, \
output_log_probs, tokens
return None
def generate(model,
prompts=None,
tokens_to_generate=0,
return_output_log_probs=False,
top_k_sampling=0,
top_p_sampling=0.0,
top_p_decay=0.0,
top_p_bound=0.0,
temperature=1.0,
add_BOS=False,
use_eod_token_for_early_termination=True,
stop_on_double_eol=False,
stop_on_eol=False,
random_seed=-1):
"""Given prompts and input parameters, run inference and return:
tokens: prompts plus the generated tokens.
lengths: length of the prompt + generations. Note that we can
discard tokens in the tokens tensor that are after the
corresponding length.
output_log_probs: log probs of the tokens.
"""
# Make sure input params are avaialble to all ranks.
values = [tokens_to_generate,
return_output_log_probs,
top_k_sampling, top_p_sampling, top_p_decay, top_p_bound,
temperature, add_BOS, use_eod_token_for_early_termination,
stop_on_double_eol,
stop_on_eol,
random_seed]
values_float_tensor = broadcast_float_list(12, float_list=values)
tokens_to_generate = int(values_float_tensor[0].item())
return_output_log_probs = bool(values_float_tensor[1].item())
top_k_sampling = int(values_float_tensor[2].item())
top_p_sampling = values_float_tensor[3].item()
top_p_decay = values_float_tensor[4].item()
top_p_bound = values_float_tensor[5].item()
temperature = values_float_tensor[6].item()
add_BOS = bool(values_float_tensor[7].item())
use_eod_token_for_early_termination = bool(values_float_tensor[8].item())
stop_on_double_eol = bool(values_float_tensor[9].item())
stop_on_eol = bool(values_float_tensor[10].item())
random_seed = int(values_float_tensor[11].item())
if random_seed != -1:
torch.random.manual_seed(random_seed)
# Tokenize prompts and get the batch.
# Note that these tensors are broadcaseted to all ranks.
if torch.distributed.get_rank() == 0:
assert prompts is not None
context_tokens_tensor, context_length_tensor = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
if tokens_to_generate == 0:
return score_and_return_on_first_stage(
model, context_tokens_tensor, context_length_tensor)
# Main inference function.
# Note that the outputs are available on the first stage.
return generate_tokens_probs_and_return_on_first_stage(
model, context_tokens_tensor, context_length_tensor,
return_output_log_probs=return_output_log_probs,
top_k=top_k_sampling,
top_p=top_p_sampling,
top_p_decay=top_p_decay,
top_p_bound=top_p_bound,
temperature=temperature,
use_eod_token_for_early_termination=use_eod_token_for_early_termination,
stop_on_double_eol=stop_on_double_eol,
stop_on_eol=stop_on_eol)
def beam_search_and_post_process(model,
prompts=None,
tokens_to_generate=0,
beam_size=0,
add_BOS=False,
stop_token=50256,
num_return_gen=1,
length_penalty=1):
"""Run beam search and post-process outputs, i.e., detokenize,
move to cpu and convert to list."""
# Main inference.
tokens, scores = beam_search(model,
prompts=prompts,
tokens_to_generate=tokens_to_generate,
beam_size=beam_size,
add_BOS=add_BOS,
stop_token=stop_token,
num_return_gen=num_return_gen,
length_penalty=length_penalty)
# Only post-process on first stage.
if mpu.is_pipeline_first_stage():
lengths = tokens.size(1)*torch.ones(beam_size, dtype=torch.int64, device=torch.cuda.current_device())
tokens, prompts_plus_generations, prompts_plus_generations_segments = detokenize_generations(tokens, lengths, True)
scores = scores.cpu().numpy().tolist()
return prompts_plus_generations, prompts_plus_generations_segments, scores
return None
def beam_search(model, prompts=None, tokens_to_generate=0, beam_size=0, add_BOS=False, stop_token=50256, num_return_gen=1, length_penalty=1):
# Make sure input params are avaialble to all ranks.
values = [tokens_to_generate,
beam_size,
add_BOS,
stop_token,
num_return_gen,
length_penalty]
values_float_tensor = broadcast_float_list(6, float_list=values)
tokens_to_generate = int(values_float_tensor[0].item())
beam_size = int(values_float_tensor[1].item())
add_BOS = bool(values_float_tensor[2].item())
stop_token = int(values_float_tensor[3].item())
num_return_gen = int(values_float_tensor[4].item())
length_penalty = values_float_tensor[5].item()
context_tokens_tensor, context_length_tensor = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
return beam_search_and_return_on_first_stage(model, context_tokens_tensor, context_length_tensor,
beam_size, stop_token=stop_token, num_return_gen=num_return_gen, length_penalty=length_penalty)