llama-2-ner

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1413
  • Precision: 0.5320
  • Recall: 0.5684
  • F1: 0.5496
  • Accuracy: 0.9784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0009
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 39 0.1312 0.1429 0.0053 0.0102 0.9677
No log 2.0 78 0.1077 0.3717 0.2211 0.2772 0.9700
No log 3.0 117 0.0770 0.4156 0.3368 0.3721 0.9752
No log 4.0 156 0.0683 0.4304 0.5368 0.4778 0.9755
No log 5.0 195 0.1069 0.4923 0.5053 0.4987 0.9768
No log 6.0 234 0.1214 0.5506 0.5158 0.5326 0.9776
No log 7.0 273 0.1393 0.5276 0.5526 0.5398 0.9783
No log 8.0 312 0.1413 0.5320 0.5684 0.5496 0.9784

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
43
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Farjfar/llama-2-ner

Adapter
(125)
this model