See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: mhenrichsen/gemma-7b
bf16: auto
datasets:
- path: data.jsonl
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 3
gradient_checkpointing: true
group_by_length: false
hub_model_id: FatCat87/test-task-2025-01-06
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: test-task-2025-01-06
wandb_project: subnet56
wandb_runid: test-task-2025-01-06
wandb_watch: null
warmup_ratio: 0.1
weight_decay: 0.0
xformers_attention: null
test-task-2025-01-06
This model is a fine-tuned version of mhenrichsen/gemma-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0913
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.046 | 0.075 | 1 | 1.1912 |
1.1095 | 0.3 | 4 | 1.1067 |
1.0619 | 0.6 | 8 | 1.0441 |
1.0547 | 0.9 | 12 | 1.0446 |
0.931 | 1.15 | 16 | 1.0528 |
0.8836 | 1.45 | 20 | 1.0399 |
0.8958 | 1.75 | 24 | 1.0419 |
0.9922 | 2.05 | 28 | 1.0361 |
0.7736 | 2.3 | 32 | 1.0851 |
0.7437 | 2.6 | 36 | 1.0840 |
0.7552 | 2.9 | 40 | 1.0769 |
0.6623 | 3.15 | 44 | 1.0870 |
0.7173 | 3.45 | 48 | 1.0946 |
0.7122 | 3.75 | 52 | 1.0913 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for FatCat87/test-task-2025-01-06
Base model
mhenrichsen/gemma-7b