metadata
library_name: transformers
language:
- lv
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper medium LV - Felikss Kleins
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: lv
split: None
args: 'config: lv, split: test'
metrics:
- name: Wer
type: wer
value: 13.506122934252765
Whisper medium LV - Felikss Kleins
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1848
- Wer: 13.5061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 6
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.04 | 200 | 0.8471 | 30.5453 |
1.8421 | 0.08 | 400 | 0.3571 | 27.1906 |
0.5851 | 0.12 | 600 | 0.3146 | 23.9508 |
0.4787 | 0.16 | 800 | 0.2913 | 23.2454 |
0.4845 | 0.2 | 1000 | 0.2736 | 20.9388 |
0.4845 | 0.24 | 1200 | 0.2495 | 19.1951 |
0.4004 | 0.28 | 1400 | 0.2416 | 18.4600 |
0.357 | 1.018 | 1600 | 0.2300 | 17.8576 |
0.3381 | 1.058 | 1800 | 0.2261 | 17.1125 |
0.3052 | 1.098 | 2000 | 0.2151 | 16.6013 |
0.3052 | 1.138 | 2200 | 0.2154 | 16.1673 |
0.2636 | 1.178 | 2400 | 0.2256 | 17.3107 |
0.2805 | 1.218 | 2600 | 0.2059 | 15.6482 |
0.2331 | 1.258 | 2800 | 0.2022 | 15.4599 |
0.2245 | 1.298 | 3000 | 0.1971 | 15.0953 |
0.2245 | 2.036 | 3200 | 0.1988 | 14.7604 |
0.2312 | 2.076 | 3400 | 0.1941 | 14.5623 |
0.2077 | 2.116 | 3600 | 0.1915 | 14.2175 |
0.1923 | 2.156 | 3800 | 0.1935 | 14.4018 |
0.2012 | 2.196 | 4000 | 0.1906 | 14.4850 |
0.2012 | 2.2360 | 4200 | 0.1880 | 13.9302 |
0.1694 | 2.276 | 4400 | 0.1860 | 14.1640 |
0.1548 | 3.014 | 4600 | 0.1855 | 13.6508 |
0.1628 | 3.054 | 4800 | 0.1850 | 13.5557 |
0.1529 | 3.094 | 5000 | 0.1848 | 13.5061 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.0.1
- Datasets 3.0.0
- Tokenizers 0.19.1