whisper-medium-lv / README.md
FelixK7's picture
End of training
7f275b7 verified
|
raw
history blame
3.53 kB
metadata
library_name: transformers
language:
  - lv
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper medium LV - Felikss Kleins
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: lv
          split: None
          args: 'config: lv, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 67.95180722891565

Whisper medium LV - Felikss Kleins

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1313
  • Wer: 67.9518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 6
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 23.0009 200 0.9920 47.2289
1.4829 47.0001 400 0.7982 48.9157
0.046 70.001 600 0.9576 51.3253
0.011 94.0002 800 0.9129 49.3976
0.0057 117.0011 1000 0.9789 51.3253
0.0057 141.0003 1200 1.0248 51.8072
0.005 164.0012 1400 1.0504 53.4940
0.0021 188.0004 1600 1.0447 67.9518
0.0015 211.0013 1800 1.0433 73.2530
0.0012 235.0005 2000 1.0646 55.1807
0.0012 258.0014 2200 1.1244 53.7349
0.0007 282.0006 2400 1.1156 59.5181
0.0006 305.0015 2600 1.1081 58.5542
0.0009 329.0007 2800 1.0342 54.4578
0.0006 352.0016 3000 1.0215 50.8434
0.0006 376.0008 3200 1.0619 56.6265
0.0004 399.0017 3400 1.1083 55.4217
0.0003 423.0009 3600 1.0970 56.8675
0.0006 447.0001 3800 1.1047 59.0361
0.0003 470.001 4000 1.1033 56.1446
0.0003 494.0002 4200 1.1003 57.5904
0.0002 517.0011 4400 1.1133 68.4337
0.0002 541.0003 4600 1.1146 69.3976
0.0001 564.0012 4800 1.1267 69.8795
0.0001 588.0004 5000 1.1313 67.9518

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.0.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1