A Pythia Chat Model of 31M Parameters

Recommended prompt format

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant

Recommended inference parameters

penalty_alpha: 0.5
top_k: 2
repetition_penalty: 1.0016

Datasets and parameters used for training

SFTTrainer(
    model,
    train_dataset=train_dataset,
    dataset_text_field="text",
    eval_dataset=eval_dataset,
    max_seq_length=2048,
    packing=True,
    args=TrainingArguments(
        learning_rate=2e-6,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=16,
        lr_scheduler_type="cosine",
        num_train_epochs=1,
        logging_strategy="steps",
        save_strategy="steps",
        evaluation_strategy="steps",
        logging_steps=10,
        eval_steps=10,
        save_steps=10,
        warmup_steps=50,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        weight_decay=0.01,
        save_total_limit=10,
        neftune_noise_alpha=5,
    ),
    callbacks=[
        EarlyStoppingCallback(
            early_stopping_patience=3,
            early_stopping_threshold=0.005
        ),
    ],
)
DPOTrainer(
    model,
    beta=0.1,
    train_dataset=dataset,
    tokenizer=tokenizer,
    eval_dataset=eval_dataset,
    max_length=1536,
    max_prompt_length=1024,
    args=TrainingArguments(
        learning_rate=2e-6,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=1,
        lr_scheduler_type="cosine",
        num_train_epochs=1,
        logging_strategy="steps",
        save_strategy="steps",
        evaluation_strategy="steps",
        logging_steps=1,
        eval_steps=1,
        save_steps=1,
        warmup_steps=0,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        weight_decay=0.0,
        neftune_noise_alpha=5,
        remove_unused_columns=False,
    ),
    callbacks=[
        EarlyStoppingCallback(
            early_stopping_patience=3,
            early_stopping_threshold=0.005
        ),
    ],
)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 19.92
AI2 Reasoning Challenge (25-Shot) 22.70
HellaSwag (10-Shot) 25.60
MMLU (5-Shot) 23.24
TruthfulQA (0-shot) 0.00
Winogrande (5-shot) 47.99
GSM8k (5-shot) 0.00
Downloads last month
2,089
Safetensors
Model size
30.5M params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Felladrin/Pythia-31M-Chat-v1

Finetuned
(140)
this model
Finetunes
7 models
Quantizations
5 models

Datasets used to train Felladrin/Pythia-31M-Chat-v1

Spaces using Felladrin/Pythia-31M-Chat-v1 2

Collection including Felladrin/Pythia-31M-Chat-v1

Evaluation results