|
Dataset stats: \ |
|
lat_mean = 39.951564548022596 \ |
|
lat_std = 0.0006361722351128644 \ |
|
lon_mean = -75.19150880602636 \ |
|
lon_std = 0.000611411894337979 |
|
|
|
The model can be loaded using: |
|
``` |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
# Specify the repository and the filename of the model you want to load |
|
repo_id = "FinalProj5190/ImageToGPSproject-resnet_vit-base" # Replace with your repo name |
|
filename = "resnet_vit_gps_regressor_complete.pth" |
|
model_path = hf_hub_download(repo_id=repo_id, filename=filename) |
|
# Load the model using torch |
|
model_test = torch.load(model_path) |
|
model_test.eval() # Set the model to evaluation mode |
|
``` |
|
|
|
The model implementation is here: |
|
``` |
|
from transformers import ViTModel |
|
class HybridGPSModel(nn.Module): |
|
def __init__(self, num_classes=2): |
|
super(HybridGPSModel, self).__init__() |
|
# Pre-trained ResNet for feature extraction |
|
self.resnet = resnet18(pretrained=True) |
|
self.resnet.fc = nn.Identity() |
|
# Pre-trained Vision Transformer |
|
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') |
|
# Combined regression head |
|
self.regression_head = nn.Sequential( |
|
nn.Linear(512 + self.vit.config.hidden_size, 128), |
|
nn.ReLU(), |
|
nn.Linear(128, num_classes) |
|
) |
|
def forward(self, x): |
|
resnet_features = self.resnet(x) |
|
vit_outputs = self.vit(pixel_values=x) |
|
vit_features = vit_outputs.last_hidden_state[:, 0, :] # CLS token |
|
combined_features = torch.cat((resnet_features, vit_features), dim=1) |
|
# Predict GPS coordinates |
|
gps_coordinates = self.regression_head(combined_features) |
|
return gps_coordinates |
|
``` |