File size: 10,610 Bytes
5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 7460603 5d1d3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# https://gist.github.com/stefan-it/30e4998ef159f33696e377a46f699d9f
import argparse
from t5x import checkpoints
from transformers import T5Config, FlaxT5ForConditionalGeneration, AutoModelForSeq2SeqLM
import torch
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
config = T5Config.from_pretrained(config_name)
flax_model = FlaxT5ForConditionalGeneration(config=config)
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["encoder"]["mlp"]
# Encoder
for layer_index in range(config.num_layers):
# Self-Attention
t5x_attention_key = t5x_model["target"]["encoder"]["encoder"]["attention"]["key"]["kernel"][:, layer_index, :, :]
t5x_attention_out = t5x_model["target"]["encoder"]["encoder"]["attention"]["out"]["kernel"][:, layer_index, :, :]
t5x_attention_query = t5x_model["target"]["encoder"]["encoder"]["attention"]["query"]["kernel"][:, layer_index, :, :]
t5x_attention_value = t5x_model["target"]["encoder"]["encoder"]["attention"]["value"]["kernel"][:, layer_index, :, :]
## Layer Normalization
t5x_attention_layer_norm = t5x_model["target"]["encoder"]["encoder"]["pre_attention_layer_norm"]["scale"][:, layer_index]
if split_mlp_wi:
t5x_mlp_wi_0 = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi_0"]["kernel"][:, layer_index, :]
t5x_mlp_wi_1 = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi_1"]["kernel"][:, layer_index, :]
else:
t5x_mlp_wi = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi"]["kernel"][:, layer_index, :]
t5x_mlp_wo = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wo"]["kernel"][:, layer_index, :]
## Layer Normalization
t5x_mlp_layer_norm = t5x_model["target"]["encoder"]["encoder"]["pre_mlp_layer_norm"]["scale"][:, layer_index]
# Assigning
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key.reshape(*t5x_attention_key.shape[:-2], -1)
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out.reshape(-1, t5x_attention_out.shape[-1])
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query.reshape(*t5x_attention_query.shape[:-2], -1)
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value.reshape(*t5x_attention_value.shape[:-2], -1)
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
if split_mlp_wi:
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
else:
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
# Only for layer 0:
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["encoder"]["relpos_bias"]["rel_embedding"].T
flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_encoder_rel_embedding[:, 0, :]
# Assigning
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
# Decoder
for layer_index in range(config.num_decoder_layers):
# Self-Attention
t5x_attention_key = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["key"]["kernel"][:, layer_index, :, :]
t5x_attention_out = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["out"]["kernel"][:, layer_index, :, :]
t5x_attention_query = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["query"]["kernel"][:, layer_index, :, :]
t5x_attention_value = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["value"]["kernel"][:, layer_index, :, :]
## Layer Normalization
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_self_attention_layer_norm"]["scale"][:, layer_index]
# Encoder-Decoder-Attention
t5x_enc_dec_attention_key = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["key"]["kernel"][:, layer_index, :, :]
t5x_enc_dec_attention_out = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["out"]["kernel"][:, layer_index, :, :]
t5x_enc_dec_attention_query = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["query"]["kernel"][:, layer_index, :, :]
t5x_enc_dec_attention_value = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["value"]["kernel"][:, layer_index, :, :]
## Layer Normalization
t5x_cross_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_cross_attention_layer_norm"]["scale"][:, layer_index]
# MLP
if split_mlp_wi:
t5x_mlp_wi_0 = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi_0"]["kernel"][:, layer_index, :]
t5x_mlp_wi_1 = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi_1"]["kernel"][:, layer_index, :]
else:
t5x_mlp_wi = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi"]["kernel"][:, layer_index, :]
t5x_mlp_wo = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wo"]["kernel"][:, layer_index, :]
## Layer Normalization
tx5_mlp_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_mlp_layer_norm"]["scale"][:, layer_index]
# Assigning
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key.reshape(*t5x_attention_key.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out.reshape(-1, t5x_attention_out.shape[-1])
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query.reshape(*t5x_attention_query.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value.reshape(*t5x_attention_value.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key.reshape(*t5x_enc_dec_attention_key.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out.reshape(-1, t5x_enc_dec_attention_out.shape[-1])
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query.reshape(*t5x_enc_dec_attention_query.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value.reshape(*t5x_enc_dec_attention_value.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
if split_mlp_wi:
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
else:
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm
# Decoder Normalization
tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"]
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
# Only for layer 0:
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["decoder"]["relpos_bias"]["rel_embedding"].T
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_decoder_rel_embedding[:, 0, :]
# Token Embeddings
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
flax_model.params["shared"]["embedding"] = tx5_token_embeddings
# LM Head
flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(flax_dump_folder_path)
print("T5X Model was sucessfully converted!")
def convert_flax_to_pytorch(flax_dump_folder_path, pytorch_dump_folder_path):
model = AutoModelForSeq2SeqLM.from_pretrained(flax_dump_folder_path, from_flax=True, torch_dtype=torch.float32)
model.save_pretrained(pytorch_dump_folder_path)
print("Flax model was sucessfully converted to Pytorch!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the TX5 checkpoint."
)
parser.add_argument(
"--config_name", default=None, type=str, required=True, help="Config name of T5 model."
)
parser.add_argument(
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
)
args = parser.parse_args()
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
convert_flax_to_pytorch(args.flax_dump_folder_path, args.flax_dump_folder_path)
|