t5-small-nl16-finnish / config.gin
aapot
Add 50k train step model
7460603
raw
history blame
6.5 kB
from __gin__ import dynamic_registration
import __main__ as train_script
import seqio
from t5x import adafactor
from t5x.examples.scalable_t5 import network
from t5x import gin_utils
from t5x import models
from t5x import partitioning
from t5x import trainer
from t5x import utils
import tasks
# Macros:
# ==============================================================================
BATCH_SIZE = 256
DROPOUT_RATE = 0.0
LABEL_SMOOTHING = 0.0
LOSS_NORMALIZING_FACTOR = None
MIXTURE_OR_TASK_MODULE = None
MIXTURE_OR_TASK_NAME = 'pretrain_finnish'
MODEL = @models.EncoderDecoderModel()
MODEL_DIR = '/researchdisk/t5-small-nl16-finnish'
OPTIMIZER = @adafactor.Adafactor()
RANDOM_SEED = None
SHUFFLE_TRAIN_EXAMPLES = True
TASK_FEATURE_LENGTHS = {'inputs': 512, 'targets': 512}
TRAIN_STEPS = 500000
USE_CACHED_TASKS = False
USE_HARDWARE_RNG = False
VOCABULARY = @seqio.SentencePieceVocabulary()
Z_LOSS = 0.0001
# Parameters for adafactor.Adafactor:
# ==============================================================================
adafactor.Adafactor.decay_rate = 0.8
adafactor.Adafactor.logical_factor_rules = \
@adafactor.standard_logical_factor_rules()
adafactor.Adafactor.step_offset = 0
# Parameters for utils.CheckpointConfig:
# ==============================================================================
utils.CheckpointConfig.restore = @utils.RestoreCheckpointConfig()
utils.CheckpointConfig.save = @utils.SaveCheckpointConfig()
# Parameters for utils.create_learning_rate_scheduler:
# ==============================================================================
utils.create_learning_rate_scheduler.base_learning_rate = 1.0
utils.create_learning_rate_scheduler.factors = 'constant * rsqrt_decay'
utils.create_learning_rate_scheduler.warmup_steps = 10000
# Parameters for train/utils.DatasetConfig:
# ==============================================================================
train/utils.DatasetConfig.batch_size = %BATCH_SIZE
train/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
train/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
train/utils.DatasetConfig.pack = True
train/utils.DatasetConfig.seed = None
train/utils.DatasetConfig.shuffle = %SHUFFLE_TRAIN_EXAMPLES
train/utils.DatasetConfig.split = 'train'
train/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
train/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
# Parameters for train_eval/utils.DatasetConfig:
# ==============================================================================
train_eval/utils.DatasetConfig.batch_size = %BATCH_SIZE
train_eval/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
train_eval/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
train_eval/utils.DatasetConfig.pack = True
train_eval/utils.DatasetConfig.seed = 42
train_eval/utils.DatasetConfig.shuffle = False
train_eval/utils.DatasetConfig.split = 'validation'
train_eval/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
train_eval/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
# Parameters for models.EncoderDecoderModel:
# ==============================================================================
models.EncoderDecoderModel.input_vocabulary = %VOCABULARY
models.EncoderDecoderModel.label_smoothing = %LABEL_SMOOTHING
models.EncoderDecoderModel.loss_normalizing_factor = %LOSS_NORMALIZING_FACTOR
models.EncoderDecoderModel.module = @network.Transformer()
models.EncoderDecoderModel.optimizer_def = %OPTIMIZER
models.EncoderDecoderModel.output_vocabulary = %VOCABULARY
models.EncoderDecoderModel.z_loss = %Z_LOSS
# Parameters for partitioning.PjitPartitioner:
# ==============================================================================
partitioning.PjitPartitioner.logical_axis_rules = \
@partitioning.standard_logical_axis_rules()
partitioning.PjitPartitioner.model_parallel_submesh = None
partitioning.PjitPartitioner.num_partitions = 1
# Parameters for utils.RestoreCheckpointConfig:
# ==============================================================================
utils.RestoreCheckpointConfig.path = []
# Parameters for utils.SaveCheckpointConfig:
# ==============================================================================
utils.SaveCheckpointConfig.dtype = 'float32'
utils.SaveCheckpointConfig.keep = 10
utils.SaveCheckpointConfig.period = 10000
utils.SaveCheckpointConfig.save_dataset = False
# Parameters for seqio.SentencePieceVocabulary:
# ==============================================================================
seqio.SentencePieceVocabulary.sentencepiece_model_file = 'spiece.model'
# Parameters for network.T5Config:
# ==============================================================================
network.T5Config.dropout_rate = %DROPOUT_RATE
network.T5Config.dtype = 'bfloat16'
network.T5Config.emb_dim = 512
network.T5Config.head_dim = 64
network.T5Config.logits_via_embedding = False
network.T5Config.mlp_activations = ('gelu', 'linear')
network.T5Config.mlp_dim = 2048
network.T5Config.num_decoder_layers = 16
network.T5Config.num_encoder_layers = 16
network.T5Config.num_heads = 8
network.T5Config.remat_policy = 'minimal'
network.T5Config.scan_layers = True
network.T5Config.vocab_size = 32128
# Parameters for train_script.train:
# ==============================================================================
train_script.train.checkpoint_cfg = @utils.CheckpointConfig()
train_script.train.eval_period = 10000
train_script.train.eval_steps = 20
train_script.train.infer_eval_dataset_cfg = None
train_script.train.model = %MODEL
train_script.train.model_dir = %MODEL_DIR
train_script.train.partitioner = @partitioning.PjitPartitioner()
train_script.train.random_seed = %RANDOM_SEED
train_script.train.summarize_config_fn = @gin_utils.summarize_gin_config
train_script.train.total_steps = %TRAIN_STEPS
train_script.train.train_dataset_cfg = @train/utils.DatasetConfig()
train_script.train.train_eval_dataset_cfg = @train_eval/utils.DatasetConfig()
train_script.train.trainer_cls = @trainer.Trainer
train_script.train.use_gda = False
train_script.train.use_hardware_rng = %USE_HARDWARE_RNG
# Parameters for trainer.Trainer:
# ==============================================================================
trainer.Trainer.learning_rate_fn = @utils.create_learning_rate_scheduler()
trainer.Trainer.num_microbatches = None
# Parameters for network.Transformer:
# ==============================================================================
network.Transformer.config = @network.T5Config()