metadata
language:
- fr
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Adrien le Grand
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test[:1%]
args: 'config: fr, split: test'
metrics:
- name: Wer
type: wer
value: 96.5565706254392
Adrien le Grand
This model is a fine-tuned version of openai/whisper-tiny.en on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 2.3909
- Wer: 96.5566
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.6081 | 0.32 | 100 | 3.9453 | 134.0126 |
2.5974 | 0.64 | 200 | 3.0204 | 123.6824 |
2.1327 | 0.96 | 300 | 2.5791 | 100.7730 |
1.7696 | 1.27 | 400 | 2.4342 | 101.4055 |
1.7047 | 1.59 | 500 | 2.3909 | 96.5566 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0