Grammar_Summarizer
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5127
- Rouge1: 0.4494
- Rouge2: 0.3672
- Rougel: 0.3833
- Rougelsum: 0.3849
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
2.2799 | 0.25 | 100 | 1.0334 | 0.3916 | 0.3085 | 0.2696 | 0.2717 |
1.0618 | 0.5 | 200 | 0.6095 | 0.3287 | 0.2746 | 0.2891 | 0.2900 |
0.8719 | 0.76 | 300 | 0.5127 | 0.4494 | 0.3672 | 0.3833 | 0.3849 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Floyd93/Grammar_Summarizer
Base model
google/mt5-small