Forkits commited on
Commit
47c4f76
·
1 Parent(s): a9569c6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 276.40 +/- 17.01
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 287.81 +/- 16.57
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7e21bb200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7e21bb290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7e21bb320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7e21bb3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fb7e21bb440>", "forward": "<function ActorCriticPolicy.forward at 0x7fb7e21bb4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7e21bb560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb7e21bb5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7e21bb680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7e21bb710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7e21bb7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb7e2188660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651844725.0365632, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMYoYz7qfp0+6AwIvYmVC7/sXWg+/cP1vAAAAAAAAAAAADp2PPAFsD+gW6c9pDChvhhnRb0WEBC9AAAAAAAAAAAAgJO6xJRhPuJmDT6l0w2/9fQgPUoHOz4AAAAAAAAAALNcKr6Ur94+yH41PpZ8K7/o112+Ni1jPgAAAAAAAAAAZr72u/Z1Rbwe4SU+83UMvS+S5Lx+Wzc+AACAPwAAgD+AHQ69FLLUPVF1ij0XVK++BKuGPAl7MD0AAAAAAAAAAM0ApLyPrgq6CrDjOl52wLQ7g8u7XMAFugAAgD8AAIA/M2CuPBbeuT89SpM+FiQ6PrQ/xzvlVqM9AAAAAAAAAAAA4lY8xYOvPKOAjj763Sm+gjdgPk5sjL4AAAAAAACAP2YorrxgwYw/1trjvKDoO7+Lg/e9tvcKvgAAAAAAAAAAgMO/vTfDpT8T36e+7TH+vuW7cL5aemS+AAAAAAAAAABzrqQ+Eh8rP1KDsD6ieTC/UIG9PtY5uz0AAAAAAAAAAGPQuz4o1f0+vDWYvF8GTL/06Nk+2QO6OgAAAAAAAAAAjTS4PfhUsjy+ZnO+TWeLvsF44T2em329AAAAAAAAAACalm29oAK9PzKBGr9dXF8+44d7u/5dL74AAAAAAAAAAM0maTz9hRw8Gkn3vXzDLr4+7aI9A52HvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UGz694qckCUhpRSlIwBbJRLmYwBdJRHQLieCSg5BC51fZQoaAZoCWgPQwijj/mAwMFxQJSGlFKUaBVLqGgWR0C4nimJBPbgdX2UKGgGaAloD0MI/FOqRJnjcUCUhpRSlGgVS7FoFkdAuJ41DgIhQnV9lChoBmgJaA9DCIVE2safx3BAlIaUUpRoFUu5aBZHQLieO8m8dxR1fZQoaAZoCWgPQwhLcsCu5i1wQJSGlFKUaBVL0GgWR0C4nkzGYKIBdX2UKGgGaAloD0MIYaqZtdQLckCUhpRSlGgVS6doFkdAuJ5lfmcOLHV9lChoBmgJaA9DCKYPXVDfzHFAlIaUUpRoFUvkaBZHQLieh00FbFF1fZQoaAZoCWgPQwjThO0nI5ByQJSGlFKUaBVLyWgWR0C4nprhegL7dX2UKGgGaAloD0MInrRwWUUhc0CUhpRSlGgVS/xoFkdAuJ66BJ7LMnV9lChoBmgJaA9DCOc0C7T7VHJAlIaUUpRoFUu8aBZHQLievrxy4nZ1fZQoaAZoCWgPQwjikuNOqbtyQJSGlFKUaBVLx2gWR0C4nt36hxo7dX2UKGgGaAloD0MIKjkn9pDicECUhpRSlGgVS8JoFkdAuJ73HaN+9nV9lChoBmgJaA9DCNqrj4d+F3BAlIaUUpRoFUu1aBZHQLifMdq+Jxh1fZQoaAZoCWgPQwj7yoP0FF1zQJSGlFKUaBVLzGgWR0C4n1UEC/47dX2UKGgGaAloD0MIWr3D7VCCcUCUhpRSlGgVS8poFkdAuK3pkZrHl3V9lChoBmgJaA9DCJG28SdqMnBAlIaUUpRoFUusaBZHQLit6B/I8yN1fZQoaAZoCWgPQwg26EtvP5VxQJSGlFKUaBVLrGgWR0C4rfNzwMH9dX2UKGgGaAloD0MIGw5LA/9rc0CUhpRSlGgVTQgBaBZHQLiuEhq0tyx1fZQoaAZoCWgPQwgTYi6pmlZzQJSGlFKUaBVL4GgWR0C4rpZLdvbXdX2UKGgGaAloD0MIPQtCed8pcUCUhpRSlGgVS/BoFkdAuK6aCpWFOHV9lChoBmgJaA9DCGe610m9GHNAlIaUUpRoFUvPaBZHQLiusGDtgKF1fZQoaAZoCWgPQwgH7Gry1BdyQJSGlFKUaBVLzWgWR0C4rtPXkHUudX2UKGgGaAloD0MIlbpkHCNQcUCUhpRSlGgVS69oFkdAuK7WcnVoYnV9lChoBmgJaA9DCD+rzJRW5nBAlIaUUpRoFUvVaBZHQLiu36OYIB11fZQoaAZoCWgPQwizJhb4ivlyQJSGlFKUaBVL+mgWR0C4rvJpztCzdX2UKGgGaAloD0MIt9Jrs/FZc0CUhpRSlGgVTUcBaBZHQLivAJW/8EV1fZQoaAZoCWgPQwhINlfN8/pzQJSGlFKUaBVL1WgWR0C4rwYJAt4BdX2UKGgGaAloD0MI2QkvwamnckCUhpRSlGgVTTwBaBZHQLivHeP7vXt1fZQoaAZoCWgPQwjnGfuSDeRvQJSGlFKUaBVLmWgWR0C4ryAWrOqvdX2UKGgGaAloD0MIDK1OzlAEcUCUhpRSlGgVS7loFkdAuK9C6+WWyHV9lChoBmgJaA9DCP89eO0SNHJAlIaUUpRoFUvTaBZHQLivUnVG0/p1fZQoaAZoCWgPQwiU+rK0U3BxQJSGlFKUaBVLvWgWR0C4r2VKoQ4CdX2UKGgGaAloD0MI4Zo7+h+NcUCUhpRSlGgVS7NoFkdAuK9vgJkXlHV9lChoBmgJaA9DCLH34ot2XHJAlIaUUpRoFUuJaBZHQLivlSElE7Z1fZQoaAZoCWgPQwjjw+xlWxJzQJSGlFKUaBVL+mgWR0C4r8sQqZtvdX2UKGgGaAloD0MIoMTnTrARckCUhpRSlGgVS5toFkdAuK/OMju8b3V9lChoBmgJaA9DCFMEOL2LR3JAlIaUUpRoFUu3aBZHQLiv7aPS2IB1fZQoaAZoCWgPQwgjSnuDr4hyQJSGlFKUaBVLrGgWR0C4sA2YrrgPdX2UKGgGaAloD0MIwYwpWGPmckCUhpRSlGgVS6poFkdAuLAkUTL4e3V9lChoBmgJaA9DCNQLPs2JvnJAlIaUUpRoFUu+aBZHQLiwLct5D7Z1fZQoaAZoCWgPQwi/R/31SlVwQJSGlFKUaBVLsmgWR0C4sEAwwj+rdX2UKGgGaAloD0MIDQBV3Phfc0CUhpRSlGgVS9VoFkdAuLBg1ivxIHV9lChoBmgJaA9DCN3vUBRoaG9AlIaUUpRoFUuiaBZHQLiwarvsqrl1fZQoaAZoCWgPQwjGUiRfiXR0QJSGlFKUaBVL0WgWR0C4sH9pItlJdX2UKGgGaAloD0MIbOwS1dtgb0CUhpRSlGgVS+ZoFkdAuLDC+fywwHV9lChoBmgJaA9DCM2RlV+G+G5AlIaUUpRoFUvpaBZHQLiwy1JlJ6J1fZQoaAZoCWgPQwiUvhBy3lVwQJSGlFKUaBVLvmgWR0C4sNJg1FYudX2UKGgGaAloD0MI9iNFZBgXc0CUhpRSlGgVS81oFkdAuLDjadtl7XV9lChoBmgJaA9DCMHIy5oYpHJAlIaUUpRoFUvcaBZHQLiw6tyPuG91fZQoaAZoCWgPQwgwgsZMIg5zQJSGlFKUaBVLymgWR0C4sQ5HI6sAdX2UKGgGaAloD0MIOx3IeioockCUhpRSlGgVS5RoFkdAuLFVGiHqNnV9lChoBmgJaA9DCED7kSLyVXFAlIaUUpRoFUuvaBZHQLixawg1WKd1fZQoaAZoCWgPQwhYdOs1vWJyQJSGlFKUaBVL32gWR0C4sWofr8iwdX2UKGgGaAloD0MIXdxGAzhxckCUhpRSlGgVS85oFkdAuLFt5a/yoXV9lChoBmgJaA9DCHtP5bRnLnJAlIaUUpRoFUvhaBZHQLixcLl3hXN1fZQoaAZoCWgPQwgNq3gj87xxQJSGlFKUaBVLwmgWR0C4sXf+bVjJdX2UKGgGaAloD0MIxqcAGE/6bkCUhpRSlGgVS69oFkdAuLGoWj4593V9lChoBmgJaA9DCMx9chQgh3JAlIaUUpRoFUugaBZHQLixq9qDbrV1fZQoaAZoCWgPQwiPF9LhIW1wQJSGlFKUaBVLxmgWR0C4sdq+SKWLdX2UKGgGaAloD0MITfT5KGNTc0CUhpRSlGgVS/poFkdAuLH9o24usnV9lChoBmgJaA9DCN7IPPLHw3JAlIaUUpRoFUutaBZHQLiyEAOJ+Dx1fZQoaAZoCWgPQwjV7IFWoI1wQJSGlFKUaBVLqWgWR0C4shk1uR9xdX2UKGgGaAloD0MIKGGm7R9lcUCUhpRSlGgVS7toFkdAuLIi/L1VYXV9lChoBmgJaA9DCJHSbB6HgnNAlIaUUpRoFUvYaBZHQLiyTq6OHWV1fZQoaAZoCWgPQwglBRbAFHxwQJSGlFKUaBVLv2gWR0C4smhmkFfRdX2UKGgGaAloD0MI68VQTjTKckCUhpRSlGgVS9toFkdAuLJ2jCYTkHV9lChoBmgJaA9DCNUHkndO/3BAlIaUUpRoFUufaBZHQLiyiyzolld1fZQoaAZoCWgPQwjRrdf0IF1wQJSGlFKUaBVLnmgWR0C4sow5vLowdX2UKGgGaAloD0MIx9rf2d4gckCUhpRSlGgVS7JoFkdAuLKVjnV5KXV9lChoBmgJaA9DCCeloNtLhnJAlIaUUpRoFUu9aBZHQLiyvS1Vo6F1fZQoaAZoCWgPQwi0A64rJptyQJSGlFKUaBVL7GgWR0C4sxMZpBX0dX2UKGgGaAloD0MIfm/Tn/18c0CUhpRSlGgVS/5oFkdAuLNGj+Jgs3V9lChoBmgJaA9DCOS/QBBgQnFAlIaUUpRoFUu7aBZHQLizUhhpg1F1fZQoaAZoCWgPQwgw2uOF9GxzQJSGlFKUaBVL6mgWR0C4s1N9Ujs2dX2UKGgGaAloD0MIryR5rm9KcECUhpRSlGgVS9FoFkdAuLNYrAgxJ3V9lChoBmgJaA9DCDcawFugKXFAlIaUUpRoFUu8aBZHQLizcKh+OOt1fZQoaAZoCWgPQwhntcAeE8BxQJSGlFKUaBVLuWgWR0C4s3UBS1mbdX2UKGgGaAloD0MIqgoNxDKMcECUhpRSlGgVS6JoFkdAuLN4OJ+DvnV9lChoBmgJaA9DCJ+vWS6b8HNAlIaUUpRoFU0EAWgWR0C4s4RFd9lVdX2UKGgGaAloD0MI0IB6M2pjb0CUhpRSlGgVS6BoFkdAuLOwoMKCx3V9lChoBmgJaA9DCBBdUN/ymHBAlIaUUpRoFUukaBZHQLiztrU9ZA91fZQoaAZoCWgPQwi9OVyrPUhwQJSGlFKUaBVLpWgWR0C4s8QpWmxddX2UKGgGaAloD0MIBYwub04DckCUhpRSlGgVS8VoFkdAuLPNb5dnkHV9lChoBmgJaA9DCOXuc3z0RXRAlIaUUpRoFU0GAWgWR0C4s+XY6GQCdX2UKGgGaAloD0MITkLpC6FIcUCUhpRSlGgVS+hoFkdAuLQYmF8G93V9lChoBmgJaA9DCO/lPjlKQnNAlIaUUpRoFUvlaBZHQLi0XJI1+Ap1fZQoaAZoCWgPQwhxzLInAWVvQJSGlFKUaBVLoWgWR0C4tHVdTo+wdX2UKGgGaAloD0MIKXY0DvXrcUCUhpRSlGgVS65oFkdAuLSJpblijXV9lChoBmgJaA9DCEJD/wSXy3BAlIaUUpRoFUu3aBZHQLi0mZvUBn11fZQoaAZoCWgPQwjtm/urR49zQJSGlFKUaBVL1mgWR0C4tJiIcinpdX2UKGgGaAloD0MIjWDj+vcIcECUhpRSlGgVS6poFkdAuLSjqX4TK3V9lChoBmgJaA9DCEvmWN7VCnJAlIaUUpRoFUu0aBZHQLi0uirDIil1fZQoaAZoCWgPQwjCa5c23IFxQJSGlFKUaBVLr2gWR0C4tL8z2vjfdX2UKGgGaAloD0MIkga3tQWrcECUhpRSlGgVS9JoFkdAuLTCLwWnCXV9lChoBmgJaA9DCN1ELc0tDnNAlIaUUpRoFUulaBZHQLi06vXsgMd1fZQoaAZoCWgPQwgav/BKUtNwQJSGlFKUaBVLxmgWR0C4tRIMvyskdX2UKGgGaAloD0MIGhajrvVqcUCUhpRSlGgVS5BoFkdAuLUc1IiC8XV9lChoBmgJaA9DCJoK8Uh8+3FAlIaUUpRoFUvQaBZHQLi1KmCROlB1fZQoaAZoCWgPQwh1jgHZK41zQJSGlFKUaBVLy2gWR0C4tTkzCUHIdX2UKGgGaAloD0MIixh2GJMcckCUhpRSlGgVTQQBaBZHQLi1PlGPPs11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1845, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f8a7770e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f8a777170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f8a777200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f8a777290>", "_build": "<function ActorCriticPolicy._build at 0x7f8f8a777320>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f8a7773b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f8a777440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f8a7774d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f8a777560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f8a7775f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f8a777680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f8a73dcf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2523136, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651861463.4019, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqw+jz2IHC6mKY3unffC7k3dxa7DoFmOQAAgD8AAIA/Zq0uPa4BlLp9Jwy8QagjOfiLCzrgh5O4AACAPwAAgD8Asra8IbuKP9ImvL0NgEm/2by4vUD7H74AAAAAAAAAADPxtryqh5Y/ChTIvYZpQb8vBfy8nE0ZvQAAAAAAAAAALS6sPjA3Gz+KoaS+6qpBv2WC8T7rJZS+AAAAAAAAAAD6Mz6+5JKyPgjdcT7VYOy+5jMBvqhpXj4AAAAAAAAAAC0EED5PlwI+npbOvruyzr4sRb68bUZ0vgAAAAAAAAAAM7OJufaceLrip0ezLBZjLk3IXTtAbsMzAACAPwAAgD+ae3S8bJHtu/8uKLxuBo88xaVVPWY1cL0AAIA/AACAP3PogT1UZUQ/+plgPW/lNL+0pyY+3VnhvQAAAAAAAAAAM/92vGxAw7smfTY9hMoePV97fjyOBGY5AACAPwAAgD9zk8k9cq2WP6KhZj7H8CC//yyOPmw4rD0AAAAAAAAAAAD6uLx7gPW6ox+UO9MFizw/16O7CEJxPQAAgD8AAIA/mpXjvOGksroWvUK1y80CsMvBXrmUo0s0AACAPwAAgD8zyzC7e2aIuuCvkjWeDTUwXGheum8JrbQAAIA/AACAP81QtbzkpxY83oydPgutR74CBx4+jLsOvwAAAAAAAIA/86+SPQUc0T6i4Py8NrUSv68H5D0qhwy+AAAAAAAAAACGjFq+9CQHP/InlT6uyiC/h+JKviVRkj4AAAAAAAAAADDrqz6VnZ4/ywXzPgdcE78mWSs/T7UcPgAAAAAAAAAAZvXYPHxEMT08bkk9yh7ZvuuItD0beOw8AAAAAAAAAAAzs3+7SVGyP1ZRRL4eSdG+aYQvOyL08DsAAAAAAAAAAMBFIT7GTNI+QFp4vmRBE7/f7Wk+4RKDvgAAAAAAAAAAmuEOO+HbsbzWYx0+x/6gO8v84L1s00U7AACAPwAAgD8A39W8dhtKvDIfDzz9css88yYrPJMFJ70AAIA/AACAP2ZyXjzpX0W8uhQxuw5JDTzYl6M9k1H6vAAAgD8AAIA/zV1XPXsihLqtJVw6xNRptg+Exzoq43+5AACAPwAAAABglHM+KUdTP75tLj0aMzS/TZvTPkBTzb0AAAAAAAAAALNoXz26Fq4/GxqXPi9Br74IPOA9pa2VPgAAAAAAAAAAZsR2vDZdS7zIrJo9zTczPdtJq71SvWw9AACAPwAAgD8aZ0e9Kd1gvL2qWj5UIj2+ITN1vbXnoj4AAIA/AACAP80cVbz21Hy6hgdLM8nG5q8Ose+5RI7GswAAgD8AAIA/xskGPqqLiD9WEMM+VWgTv6D+XD6G+o8+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBwzS4c0CUhpRSlIwBbJRLtYwBdJRHQLGLTqeK8+R1fZQoaAZoCWgPQwisyOiAJNdzQJSGlFKUaBVLq2gWR0Cxi3Mxfv4NdX2UKGgGaAloD0MIiQrVzcWTckCUhpRSlGgVS7loFkdAsYuvL5h0AHV9lChoBmgJaA9DCFH1K51PEXFAlIaUUpRoFUvNaBZHQLGLsHjZL7J1fZQoaAZoCWgPQwiDiNS0S7FzQJSGlFKUaBVL3WgWR0Cxi93Hq/ucdX2UKGgGaAloD0MINDDysmYpcECUhpRSlGgVS7loFkdAsYv0bWEsa3V9lChoBmgJaA9DCEFn0qaqv3JAlIaUUpRoFUutaBZHQLGMBKA8Swp1fZQoaAZoCWgPQwghBrr2xYByQJSGlFKUaBVLw2gWR0CxjAiYoiLVdX2UKGgGaAloD0MIEcMOY9JxcECUhpRSlGgVS7VoFkdAsYwPSgGr0nV9lChoBmgJaA9DCN+mP/uRFnFAlIaUUpRoFUuyaBZHQLGMGhHbypd1fZQoaAZoCWgPQwiADYgQl/lxQJSGlFKUaBVLxWgWR0CxjB7DEWIodX2UKGgGaAloD0MIFCAKZgzOcUCUhpRSlGgVS7JoFkdAsYwjOv+wT3V9lChoBmgJaA9DCLFppRCIU3FAlIaUUpRoFUu7aBZHQLGMKAvcrRV1fZQoaAZoCWgPQwh+calK24VvQJSGlFKUaBVLrmgWR0CxjCV4TsY3dX2UKGgGaAloD0MIY3yYvSyeckCUhpRSlGgVS6ZoFkdAsYw2wFC9iHV9lChoBmgJaA9DCMpRgCgYfnJAlIaUUpRoFUuoaBZHQLGMPQRf4RF1fZQoaAZoCWgPQwinWguzkJJyQJSGlFKUaBVLsWgWR0CxjIjXrdFfdX2UKGgGaAloD0MIR1hUxOm3ckCUhpRSlGgVS8ZoFkdAsYyRwZOzp3V9lChoBmgJaA9DCIc0KnCysXFAlIaUUpRoFUuoaBZHQLGM2lVLi/B1fZQoaAZoCWgPQwg+r3jqEQFyQJSGlFKUaBVLzWgWR0CxjN9liBoVdX2UKGgGaAloD0MI7bsi+N/ZcECUhpRSlGgVS7hoFkdAsYzeH6/IsHV9lChoBmgJaA9DCEfmkT+YA3NAlIaUUpRoFUvFaBZHQLGM8rdnCfp1fZQoaAZoCWgPQwgAV7JjI3FvQJSGlFKUaBVLsGgWR0CxjQclsxfwdX2UKGgGaAloD0MIxY7GoT6McUCUhpRSlGgVS8FoFkdAsY0Ki/O+qXV9lChoBmgJaA9DCEUTKGIR73FAlIaUUpRoFUuzaBZHQLGNDesxO+J1fZQoaAZoCWgPQwjMe5xpQjJzQJSGlFKUaBVLvmgWR0CxjUeiJwbVdX2UKGgGaAloD0MIgXhdv+BEb0CUhpRSlGgVS7poFkdAsY1IzyjHn3V9lChoBmgJaA9DCJxtbkxPWHJAlIaUUpRoFUuqaBZHQLGNTSmIj4Z1fZQoaAZoCWgPQwgCY30DU1pxQJSGlFKUaBVLumgWR0CxjXYyj59FdX2UKGgGaAloD0MI9G+X/bqwcECUhpRSlGgVS7RoFkdAsY159/jKgnV9lChoBmgJaA9DCHeE04KX93JAlIaUUpRoFUvPaBZHQLGNfZIg/1R1fZQoaAZoCWgPQwgiNe1imh5zQJSGlFKUaBVLzWgWR0CxjZuQyRCAdX2UKGgGaAloD0MIqio0EEu6ckCUhpRSlGgVS7JoFkdAsY2Zkf9xZXV9lChoBmgJaA9DCKSpnsw/RXBAlIaUUpRoFUu0aBZHQLGN1W4Vh1F1fZQoaAZoCWgPQwioN6Pm625wQJSGlFKUaBVLoGgWR0Cxjdt7fHghdX2UKGgGaAloD0MIL4UHzW4QcUCUhpRSlGgVS8doFkdAsY4QnssxwnV9lChoBmgJaA9DCPm9TX+2pnBAlIaUUpRoFUu6aBZHQLGOFmVJL/V1fZQoaAZoCWgPQwjN5nEYTK9vQJSGlFKUaBVLqmgWR0CxjiPIGQjmdX2UKGgGaAloD0MIFXMQdDRacUCUhpRSlGgVS69oFkdAsY4u7wrlNnV9lChoBmgJaA9DCNsV+mDZ3XBAlIaUUpRoFUu5aBZHQLGOOenQ6ZJ1fZQoaAZoCWgPQwiH3Aw3IJ1wQJSGlFKUaBVLqmgWR0CxjkP8MuvmdX2UKGgGaAloD0MItYmT+113cUCUhpRSlGgVS75oFkdAsY5OCz1K5HV9lChoBmgJaA9DCNoaEYwDvXNAlIaUUpRoFUu6aBZHQLGOX9deIEd1fZQoaAZoCWgPQwjU8gNXefdvQJSGlFKUaBVLx2gWR0CxjoQ1ivxIdX2UKGgGaAloD0MIgV64cyFNckCUhpRSlGgVS9NoFkdAsY6Y7YChe3V9lChoBmgJaA9DCFeVfVdEDXJAlIaUUpRoFUuwaBZHQLGOslLOAy51fZQoaAZoCWgPQwg8vr1rECFxQJSGlFKUaBVL1GgWR0CxjrEdq+JxdX2UKGgGaAloD0MIYMyWrAo3dECUhpRSlGgVS9RoFkdAsY7DfbblBHV9lChoBmgJaA9DCGlwW1t48XFAlIaUUpRoFUvNaBZHQLGPBRGMGX51fZQoaAZoCWgPQwgOZhNg2N1uQJSGlFKUaBVLrGgWR0Cxjx9xMnJDdX2UKGgGaAloD0MIwTdNn511cECUhpRSlGgVS7xoFkdAsY8jUI9kjHV9lChoBmgJaA9DCHIaogr/gHNAlIaUUpRoFUvBaBZHQLGPN6NlyzZ1fZQoaAZoCWgPQwi2vd2SXE9yQJSGlFKUaBVLxGgWR0Cxj0M4YJmedX2UKGgGaAloD0MIfxR15p6nckCUhpRSlGgVS8toFkdAsY9uQr+YMXV9lChoBmgJaA9DCMkAUMUNmHFAlIaUUpRoFUulaBZHQLGPg4+KTB91fZQoaAZoCWgPQwgbuAN1CqZxQJSGlFKUaBVLzmgWR0Cxj42yC4BndX2UKGgGaAloD0MI0nDK3PyIb0CUhpRSlGgVS7poFkdAsY+Tr1M/QnV9lChoBmgJaA9DCGhYjLrWWHNAlIaUUpRoFUvOaBZHQLGPlPBBRht1fZQoaAZoCWgPQwj6CtKMxRdoQJSGlFKUaBVN6ANoFkdAsY/KflIVd3V9lChoBmgJaA9DCN/eNegLmXNAlIaUUpRoFUu5aBZHQLGP7O1v2oN1fZQoaAZoCWgPQwiYMQVr3PtzQJSGlFKUaBVL02gWR0Cxj/FAJLM+dX2UKGgGaAloD0MIzEOmfEiHdECUhpRSlGgVS9RoFkdAsY/wljVhC3V9lChoBmgJaA9DCHXIzXBDVXJAlIaUUpRoFUvDaBZHQLGQDz/p+tt1fZQoaAZoCWgPQwgTgH9KFQJ0QJSGlFKUaBVLzmgWR0CxkBPwZwXJdX2UKGgGaAloD0MIqaROQJNQc0CUhpRSlGgVS9JoFkdAsZAZIMBp6HV9lChoBmgJaA9DCI0mF2MgHHJAlIaUUpRoFUu4aBZHQLGQMRSP2f11fZQoaAZoCWgPQwiPGhNiLk1wQJSGlFKUaBVLyWgWR0CxkF5jhDPXdX2UKGgGaAloD0MIAKlNnJwFdECUhpRSlGgVS7hoFkdAsZBl/5LytnV9lChoBmgJaA9DCB08E5oka3NAlIaUUpRoFUu+aBZHQLGQijnV5KR1fZQoaAZoCWgPQwjYDHBB9s1zQJSGlFKUaBVLuWgWR0CxkJB5Pdl/dX2UKGgGaAloD0MIXOMz2X97c0CUhpRSlGgVS8ZoFkdAsZCWqn3tbHV9lChoBmgJaA9DCAGkNnHyuXJAlIaUUpRoFUu4aBZHQLGQlw9JSR91fZQoaAZoCWgPQwiyEvOs5NpxQJSGlFKUaBVLoGgWR0CxkJ1tXPqtdX2UKGgGaAloD0MISkVj7e8BcUCUhpRSlGgVS7loFkdAsZClpfx+a3V9lChoBmgJaA9DCMCxZ89l/HFAlIaUUpRoFUuvaBZHQLGQum8M/hV1fZQoaAZoCWgPQwguPZrqydJyQJSGlFKUaBVL02gWR0CxkNRxYJVsdX2UKGgGaAloD0MIaVVLOkq5ckCUhpRSlGgVS8toFkdAsZDrDFZPmHV9lChoBmgJaA9DCDvCacHLCnNAlIaUUpRoFUu0aBZHQLGQ8t/WlM11fZQoaAZoCWgPQwgZ5C7C1AVyQJSGlFKUaBVLu2gWR0CxkQWNvOyFdX2UKGgGaAloD0MIup7ouvCAcUCUhpRSlGgVS5loFkdAsZEIhbGFSXV9lChoBmgJaA9DCLTIdr5f9nFAlIaUUpRoFUuqaBZHQLGRIT4tYjl1fZQoaAZoCWgPQwjA54cRAhxyQJSGlFKUaBVLw2gWR0CxkS1PJq7AdX2UKGgGaAloD0MI/YhfsQbgckCUhpRSlGgVS6toFkdAsZE+VII4VHV9lChoBmgJaA9DCG2sxDxr73BAlIaUUpRoFUuzaBZHQLGRZsVtXPt1fZQoaAZoCWgPQwhMwRpn0wVzQJSGlFKUaBVLq2gWR0CxkYA1aW5ZdX2UKGgGaAloD0MIFw0Zj5KXckCUhpRSlGgVS6JoFkdAsZGHK0UoKHV9lChoBmgJaA9DCPlp3JvfJnJAlIaUUpRoFUupaBZHQLGRjTEBKcx1fZQoaAZoCWgPQwjZP08Dxh1wQJSGlFKUaBVLwGgWR0CxkZe6NEPUdX2UKGgGaAloD0MIbApkdhYlckCUhpRSlGgVS7JoFkdAsZG3Olfqo3V9lChoBmgJaA9DCDEL7ZzmSHFAlIaUUpRoFUuwaBZHQLGR3hddE9d1fZQoaAZoCWgPQwitbYrHRQ5xQJSGlFKUaBVLp2gWR0CxkeGHUMG5dX2UKGgGaAloD0MI7s7abZeob0CUhpRSlGgVS6JoFkdAsZH8aCL/CXV9lChoBmgJaA9DCBK9jGL50HNAlIaUUpRoFUu7aBZHQLGSIh3JPqN1fZQoaAZoCWgPQwhOtRZmoQRyQJSGlFKUaBVLwmgWR0CxkjmG7BfsdX2UKGgGaAloD0MIJ6JfW/9/cECUhpRSlGgVS8BoFkdAsZJVI1+AmXV9lChoBmgJaA9DCMizy7c+WHNAlIaUUpRoFUvAaBZHQLGSc30wrUd1fZQoaAZoCWgPQwidTNwqyGxwQJSGlFKUaBVLtGgWR0CxknxyS3b3dX2UKGgGaAloD0MIDW0ANqCFckCUhpRSlGgVS9BoFkdAsZKCzAvcrXV9lChoBmgJaA9DCBJosKnzlXBAlIaUUpRoFUuraBZHQLGSjRHf/FR1fZQoaAZoCWgPQwgv3/qw3uBwQJSGlFKUaBVLtWgWR0Cxkrujh1kldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1540, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc84e622eb50949285b5b27058a7af76d80923b3c3afc5395691ca1a4670eb5c
3
- size 143993
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff51b793069b846966259378ce79f27ee99b68f0a4148c0e17165cb2a26a7e44
3
+ size 144682
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7e21bb200>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7e21bb290>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7e21bb320>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7e21bb3b0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb7e21bb440>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb7e21bb4d0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7e21bb560>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb7e21bb5f0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7e21bb680>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7e21bb710>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7e21bb7a0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fb7e2188660>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -41,13 +41,13 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 2015232,
46
- "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651844725.0365632,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,26 +56,26 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMYoYz7qfp0+6AwIvYmVC7/sXWg+/cP1vAAAAAAAAAAAADp2PPAFsD+gW6c9pDChvhhnRb0WEBC9AAAAAAAAAAAAgJO6xJRhPuJmDT6l0w2/9fQgPUoHOz4AAAAAAAAAALNcKr6Ur94+yH41PpZ8K7/o112+Ni1jPgAAAAAAAAAAZr72u/Z1Rbwe4SU+83UMvS+S5Lx+Wzc+AACAPwAAgD+AHQ69FLLUPVF1ij0XVK++BKuGPAl7MD0AAAAAAAAAAM0ApLyPrgq6CrDjOl52wLQ7g8u7XMAFugAAgD8AAIA/M2CuPBbeuT89SpM+FiQ6PrQ/xzvlVqM9AAAAAAAAAAAA4lY8xYOvPKOAjj763Sm+gjdgPk5sjL4AAAAAAACAP2YorrxgwYw/1trjvKDoO7+Lg/e9tvcKvgAAAAAAAAAAgMO/vTfDpT8T36e+7TH+vuW7cL5aemS+AAAAAAAAAABzrqQ+Eh8rP1KDsD6ieTC/UIG9PtY5uz0AAAAAAAAAAGPQuz4o1f0+vDWYvF8GTL/06Nk+2QO6OgAAAAAAAAAAjTS4PfhUsjy+ZnO+TWeLvsF44T2em329AAAAAAAAAACalm29oAK9PzKBGr9dXF8+44d7u/5dL74AAAAAAAAAAM0maTz9hRw8Gkn3vXzDLr4+7aI9A52HvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.007616000000000067,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UGz694qckCUhpRSlIwBbJRLmYwBdJRHQLieCSg5BC51fZQoaAZoCWgPQwijj/mAwMFxQJSGlFKUaBVLqGgWR0C4nimJBPbgdX2UKGgGaAloD0MI/FOqRJnjcUCUhpRSlGgVS7FoFkdAuJ41DgIhQnV9lChoBmgJaA9DCIVE2safx3BAlIaUUpRoFUu5aBZHQLieO8m8dxR1fZQoaAZoCWgPQwhLcsCu5i1wQJSGlFKUaBVL0GgWR0C4nkzGYKIBdX2UKGgGaAloD0MIYaqZtdQLckCUhpRSlGgVS6doFkdAuJ5lfmcOLHV9lChoBmgJaA9DCKYPXVDfzHFAlIaUUpRoFUvkaBZHQLieh00FbFF1fZQoaAZoCWgPQwjThO0nI5ByQJSGlFKUaBVLyWgWR0C4nprhegL7dX2UKGgGaAloD0MInrRwWUUhc0CUhpRSlGgVS/xoFkdAuJ66BJ7LMnV9lChoBmgJaA9DCOc0C7T7VHJAlIaUUpRoFUu8aBZHQLievrxy4nZ1fZQoaAZoCWgPQwjikuNOqbtyQJSGlFKUaBVLx2gWR0C4nt36hxo7dX2UKGgGaAloD0MIKjkn9pDicECUhpRSlGgVS8JoFkdAuJ73HaN+9nV9lChoBmgJaA9DCNqrj4d+F3BAlIaUUpRoFUu1aBZHQLifMdq+Jxh1fZQoaAZoCWgPQwj7yoP0FF1zQJSGlFKUaBVLzGgWR0C4n1UEC/47dX2UKGgGaAloD0MIWr3D7VCCcUCUhpRSlGgVS8poFkdAuK3pkZrHl3V9lChoBmgJaA9DCJG28SdqMnBAlIaUUpRoFUusaBZHQLit6B/I8yN1fZQoaAZoCWgPQwg26EtvP5VxQJSGlFKUaBVLrGgWR0C4rfNzwMH9dX2UKGgGaAloD0MIGw5LA/9rc0CUhpRSlGgVTQgBaBZHQLiuEhq0tyx1fZQoaAZoCWgPQwgTYi6pmlZzQJSGlFKUaBVL4GgWR0C4rpZLdvbXdX2UKGgGaAloD0MIPQtCed8pcUCUhpRSlGgVS/BoFkdAuK6aCpWFOHV9lChoBmgJaA9DCGe610m9GHNAlIaUUpRoFUvPaBZHQLiusGDtgKF1fZQoaAZoCWgPQwgH7Gry1BdyQJSGlFKUaBVLzWgWR0C4rtPXkHUudX2UKGgGaAloD0MIlbpkHCNQcUCUhpRSlGgVS69oFkdAuK7WcnVoYnV9lChoBmgJaA9DCD+rzJRW5nBAlIaUUpRoFUvVaBZHQLiu36OYIB11fZQoaAZoCWgPQwizJhb4ivlyQJSGlFKUaBVL+mgWR0C4rvJpztCzdX2UKGgGaAloD0MIt9Jrs/FZc0CUhpRSlGgVTUcBaBZHQLivAJW/8EV1fZQoaAZoCWgPQwhINlfN8/pzQJSGlFKUaBVL1WgWR0C4rwYJAt4BdX2UKGgGaAloD0MI2QkvwamnckCUhpRSlGgVTTwBaBZHQLivHeP7vXt1fZQoaAZoCWgPQwjnGfuSDeRvQJSGlFKUaBVLmWgWR0C4ryAWrOqvdX2UKGgGaAloD0MIDK1OzlAEcUCUhpRSlGgVS7loFkdAuK9C6+WWyHV9lChoBmgJaA9DCP89eO0SNHJAlIaUUpRoFUvTaBZHQLivUnVG0/p1fZQoaAZoCWgPQwiU+rK0U3BxQJSGlFKUaBVLvWgWR0C4r2VKoQ4CdX2UKGgGaAloD0MI4Zo7+h+NcUCUhpRSlGgVS7NoFkdAuK9vgJkXlHV9lChoBmgJaA9DCLH34ot2XHJAlIaUUpRoFUuJaBZHQLivlSElE7Z1fZQoaAZoCWgPQwjjw+xlWxJzQJSGlFKUaBVL+mgWR0C4r8sQqZtvdX2UKGgGaAloD0MIoMTnTrARckCUhpRSlGgVS5toFkdAuK/OMju8b3V9lChoBmgJaA9DCFMEOL2LR3JAlIaUUpRoFUu3aBZHQLiv7aPS2IB1fZQoaAZoCWgPQwgjSnuDr4hyQJSGlFKUaBVLrGgWR0C4sA2YrrgPdX2UKGgGaAloD0MIwYwpWGPmckCUhpRSlGgVS6poFkdAuLAkUTL4e3V9lChoBmgJaA9DCNQLPs2JvnJAlIaUUpRoFUu+aBZHQLiwLct5D7Z1fZQoaAZoCWgPQwi/R/31SlVwQJSGlFKUaBVLsmgWR0C4sEAwwj+rdX2UKGgGaAloD0MIDQBV3Phfc0CUhpRSlGgVS9VoFkdAuLBg1ivxIHV9lChoBmgJaA9DCN3vUBRoaG9AlIaUUpRoFUuiaBZHQLiwarvsqrl1fZQoaAZoCWgPQwjGUiRfiXR0QJSGlFKUaBVL0WgWR0C4sH9pItlJdX2UKGgGaAloD0MIbOwS1dtgb0CUhpRSlGgVS+ZoFkdAuLDC+fywwHV9lChoBmgJaA9DCM2RlV+G+G5AlIaUUpRoFUvpaBZHQLiwy1JlJ6J1fZQoaAZoCWgPQwiUvhBy3lVwQJSGlFKUaBVLvmgWR0C4sNJg1FYudX2UKGgGaAloD0MI9iNFZBgXc0CUhpRSlGgVS81oFkdAuLDjadtl7XV9lChoBmgJaA9DCMHIy5oYpHJAlIaUUpRoFUvcaBZHQLiw6tyPuG91fZQoaAZoCWgPQwgwgsZMIg5zQJSGlFKUaBVLymgWR0C4sQ5HI6sAdX2UKGgGaAloD0MIOx3IeioockCUhpRSlGgVS5RoFkdAuLFVGiHqNnV9lChoBmgJaA9DCED7kSLyVXFAlIaUUpRoFUuvaBZHQLixawg1WKd1fZQoaAZoCWgPQwhYdOs1vWJyQJSGlFKUaBVL32gWR0C4sWofr8iwdX2UKGgGaAloD0MIXdxGAzhxckCUhpRSlGgVS85oFkdAuLFt5a/yoXV9lChoBmgJaA9DCHtP5bRnLnJAlIaUUpRoFUvhaBZHQLixcLl3hXN1fZQoaAZoCWgPQwgNq3gj87xxQJSGlFKUaBVLwmgWR0C4sXf+bVjJdX2UKGgGaAloD0MIxqcAGE/6bkCUhpRSlGgVS69oFkdAuLGoWj4593V9lChoBmgJaA9DCMx9chQgh3JAlIaUUpRoFUugaBZHQLixq9qDbrV1fZQoaAZoCWgPQwiPF9LhIW1wQJSGlFKUaBVLxmgWR0C4sdq+SKWLdX2UKGgGaAloD0MITfT5KGNTc0CUhpRSlGgVS/poFkdAuLH9o24usnV9lChoBmgJaA9DCN7IPPLHw3JAlIaUUpRoFUutaBZHQLiyEAOJ+Dx1fZQoaAZoCWgPQwjV7IFWoI1wQJSGlFKUaBVLqWgWR0C4shk1uR9xdX2UKGgGaAloD0MIKGGm7R9lcUCUhpRSlGgVS7toFkdAuLIi/L1VYXV9lChoBmgJaA9DCJHSbB6HgnNAlIaUUpRoFUvYaBZHQLiyTq6OHWV1fZQoaAZoCWgPQwglBRbAFHxwQJSGlFKUaBVLv2gWR0C4smhmkFfRdX2UKGgGaAloD0MI68VQTjTKckCUhpRSlGgVS9toFkdAuLJ2jCYTkHV9lChoBmgJaA9DCNUHkndO/3BAlIaUUpRoFUufaBZHQLiyiyzolld1fZQoaAZoCWgPQwjRrdf0IF1wQJSGlFKUaBVLnmgWR0C4sow5vLowdX2UKGgGaAloD0MIx9rf2d4gckCUhpRSlGgVS7JoFkdAuLKVjnV5KXV9lChoBmgJaA9DCCeloNtLhnJAlIaUUpRoFUu9aBZHQLiyvS1Vo6F1fZQoaAZoCWgPQwi0A64rJptyQJSGlFKUaBVL7GgWR0C4sxMZpBX0dX2UKGgGaAloD0MIfm/Tn/18c0CUhpRSlGgVS/5oFkdAuLNGj+Jgs3V9lChoBmgJaA9DCOS/QBBgQnFAlIaUUpRoFUu7aBZHQLizUhhpg1F1fZQoaAZoCWgPQwgw2uOF9GxzQJSGlFKUaBVL6mgWR0C4s1N9Ujs2dX2UKGgGaAloD0MIryR5rm9KcECUhpRSlGgVS9FoFkdAuLNYrAgxJ3V9lChoBmgJaA9DCDcawFugKXFAlIaUUpRoFUu8aBZHQLizcKh+OOt1fZQoaAZoCWgPQwhntcAeE8BxQJSGlFKUaBVLuWgWR0C4s3UBS1mbdX2UKGgGaAloD0MIqgoNxDKMcECUhpRSlGgVS6JoFkdAuLN4OJ+DvnV9lChoBmgJaA9DCJ+vWS6b8HNAlIaUUpRoFU0EAWgWR0C4s4RFd9lVdX2UKGgGaAloD0MI0IB6M2pjb0CUhpRSlGgVS6BoFkdAuLOwoMKCx3V9lChoBmgJaA9DCBBdUN/ymHBAlIaUUpRoFUukaBZHQLiztrU9ZA91fZQoaAZoCWgPQwi9OVyrPUhwQJSGlFKUaBVLpWgWR0C4s8QpWmxddX2UKGgGaAloD0MIBYwub04DckCUhpRSlGgVS8VoFkdAuLPNb5dnkHV9lChoBmgJaA9DCOXuc3z0RXRAlIaUUpRoFU0GAWgWR0C4s+XY6GQCdX2UKGgGaAloD0MITkLpC6FIcUCUhpRSlGgVS+hoFkdAuLQYmF8G93V9lChoBmgJaA9DCO/lPjlKQnNAlIaUUpRoFUvlaBZHQLi0XJI1+Ap1fZQoaAZoCWgPQwhxzLInAWVvQJSGlFKUaBVLoWgWR0C4tHVdTo+wdX2UKGgGaAloD0MIKXY0DvXrcUCUhpRSlGgVS65oFkdAuLSJpblijXV9lChoBmgJaA9DCEJD/wSXy3BAlIaUUpRoFUu3aBZHQLi0mZvUBn11fZQoaAZoCWgPQwjtm/urR49zQJSGlFKUaBVL1mgWR0C4tJiIcinpdX2UKGgGaAloD0MIjWDj+vcIcECUhpRSlGgVS6poFkdAuLSjqX4TK3V9lChoBmgJaA9DCEvmWN7VCnJAlIaUUpRoFUu0aBZHQLi0uirDIil1fZQoaAZoCWgPQwjCa5c23IFxQJSGlFKUaBVLr2gWR0C4tL8z2vjfdX2UKGgGaAloD0MIkga3tQWrcECUhpRSlGgVS9JoFkdAuLTCLwWnCXV9lChoBmgJaA9DCN1ELc0tDnNAlIaUUpRoFUulaBZHQLi06vXsgMd1fZQoaAZoCWgPQwgav/BKUtNwQJSGlFKUaBVLxmgWR0C4tRIMvyskdX2UKGgGaAloD0MIGhajrvVqcUCUhpRSlGgVS5BoFkdAuLUc1IiC8XV9lChoBmgJaA9DCJoK8Uh8+3FAlIaUUpRoFUvQaBZHQLi1KmCROlB1fZQoaAZoCWgPQwh1jgHZK41zQJSGlFKUaBVLy2gWR0C4tTkzCUHIdX2UKGgGaAloD0MIixh2GJMcckCUhpRSlGgVTQQBaBZHQLi1PlGPPs11ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 1845,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -83,7 +83,7 @@
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 128,
86
- "n_epochs": 15,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f8a7770e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f8a777170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f8a777200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f8a777290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8f8a777320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8f8a7773b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f8a777440>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8f8a7774d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f8a777560>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f8a7775f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f8a777680>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8f8a73dcf0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
+ "n_envs": 32,
45
+ "num_timesteps": 2523136,
46
+ "_total_timesteps": 2500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651861463.4019,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqw+jz2IHC6mKY3unffC7k3dxa7DoFmOQAAgD8AAIA/Zq0uPa4BlLp9Jwy8QagjOfiLCzrgh5O4AACAPwAAgD8Asra8IbuKP9ImvL0NgEm/2by4vUD7H74AAAAAAAAAADPxtryqh5Y/ChTIvYZpQb8vBfy8nE0ZvQAAAAAAAAAALS6sPjA3Gz+KoaS+6qpBv2WC8T7rJZS+AAAAAAAAAAD6Mz6+5JKyPgjdcT7VYOy+5jMBvqhpXj4AAAAAAAAAAC0EED5PlwI+npbOvruyzr4sRb68bUZ0vgAAAAAAAAAAM7OJufaceLrip0ezLBZjLk3IXTtAbsMzAACAPwAAgD+ae3S8bJHtu/8uKLxuBo88xaVVPWY1cL0AAIA/AACAP3PogT1UZUQ/+plgPW/lNL+0pyY+3VnhvQAAAAAAAAAAM/92vGxAw7smfTY9hMoePV97fjyOBGY5AACAPwAAgD9zk8k9cq2WP6KhZj7H8CC//yyOPmw4rD0AAAAAAAAAAAD6uLx7gPW6ox+UO9MFizw/16O7CEJxPQAAgD8AAIA/mpXjvOGksroWvUK1y80CsMvBXrmUo0s0AACAPwAAgD8zyzC7e2aIuuCvkjWeDTUwXGheum8JrbQAAIA/AACAP81QtbzkpxY83oydPgutR74CBx4+jLsOvwAAAAAAAIA/86+SPQUc0T6i4Py8NrUSv68H5D0qhwy+AAAAAAAAAACGjFq+9CQHP/InlT6uyiC/h+JKviVRkj4AAAAAAAAAADDrqz6VnZ4/ywXzPgdcE78mWSs/T7UcPgAAAAAAAAAAZvXYPHxEMT08bkk9yh7ZvuuItD0beOw8AAAAAAAAAAAzs3+7SVGyP1ZRRL4eSdG+aYQvOyL08DsAAAAAAAAAAMBFIT7GTNI+QFp4vmRBE7/f7Wk+4RKDvgAAAAAAAAAAmuEOO+HbsbzWYx0+x/6gO8v84L1s00U7AACAPwAAgD8A39W8dhtKvDIfDzz9css88yYrPJMFJ70AAIA/AACAP2ZyXjzpX0W8uhQxuw5JDTzYl6M9k1H6vAAAgD8AAIA/zV1XPXsihLqtJVw6xNRptg+Exzoq43+5AACAPwAAAABglHM+KUdTP75tLj0aMzS/TZvTPkBTzb0AAAAAAAAAALNoXz26Fq4/GxqXPi9Br74IPOA9pa2VPgAAAAAAAAAAZsR2vDZdS7zIrJo9zTczPdtJq71SvWw9AACAPwAAgD8aZ0e9Kd1gvL2qWj5UIj2+ITN1vbXnoj4AAIA/AACAP80cVbz21Hy6hgdLM8nG5q8Ose+5RI7GswAAgD8AAIA/xskGPqqLiD9WEMM+VWgTv6D+XD6G+o8+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.009254400000000107,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBwzS4c0CUhpRSlIwBbJRLtYwBdJRHQLGLTqeK8+R1fZQoaAZoCWgPQwisyOiAJNdzQJSGlFKUaBVLq2gWR0Cxi3Mxfv4NdX2UKGgGaAloD0MIiQrVzcWTckCUhpRSlGgVS7loFkdAsYuvL5h0AHV9lChoBmgJaA9DCFH1K51PEXFAlIaUUpRoFUvNaBZHQLGLsHjZL7J1fZQoaAZoCWgPQwiDiNS0S7FzQJSGlFKUaBVL3WgWR0Cxi93Hq/ucdX2UKGgGaAloD0MINDDysmYpcECUhpRSlGgVS7loFkdAsYv0bWEsa3V9lChoBmgJaA9DCEFn0qaqv3JAlIaUUpRoFUutaBZHQLGMBKA8Swp1fZQoaAZoCWgPQwghBrr2xYByQJSGlFKUaBVLw2gWR0CxjAiYoiLVdX2UKGgGaAloD0MIEcMOY9JxcECUhpRSlGgVS7VoFkdAsYwPSgGr0nV9lChoBmgJaA9DCN+mP/uRFnFAlIaUUpRoFUuyaBZHQLGMGhHbypd1fZQoaAZoCWgPQwiADYgQl/lxQJSGlFKUaBVLxWgWR0CxjB7DEWIodX2UKGgGaAloD0MIFCAKZgzOcUCUhpRSlGgVS7JoFkdAsYwjOv+wT3V9lChoBmgJaA9DCLFppRCIU3FAlIaUUpRoFUu7aBZHQLGMKAvcrRV1fZQoaAZoCWgPQwh+calK24VvQJSGlFKUaBVLrmgWR0CxjCV4TsY3dX2UKGgGaAloD0MIY3yYvSyeckCUhpRSlGgVS6ZoFkdAsYw2wFC9iHV9lChoBmgJaA9DCMpRgCgYfnJAlIaUUpRoFUuoaBZHQLGMPQRf4RF1fZQoaAZoCWgPQwinWguzkJJyQJSGlFKUaBVLsWgWR0CxjIjXrdFfdX2UKGgGaAloD0MIR1hUxOm3ckCUhpRSlGgVS8ZoFkdAsYyRwZOzp3V9lChoBmgJaA9DCIc0KnCysXFAlIaUUpRoFUuoaBZHQLGM2lVLi/B1fZQoaAZoCWgPQwg+r3jqEQFyQJSGlFKUaBVLzWgWR0CxjN9liBoVdX2UKGgGaAloD0MI7bsi+N/ZcECUhpRSlGgVS7hoFkdAsYzeH6/IsHV9lChoBmgJaA9DCEfmkT+YA3NAlIaUUpRoFUvFaBZHQLGM8rdnCfp1fZQoaAZoCWgPQwgAV7JjI3FvQJSGlFKUaBVLsGgWR0CxjQclsxfwdX2UKGgGaAloD0MIxY7GoT6McUCUhpRSlGgVS8FoFkdAsY0Ki/O+qXV9lChoBmgJaA9DCEUTKGIR73FAlIaUUpRoFUuzaBZHQLGNDesxO+J1fZQoaAZoCWgPQwjMe5xpQjJzQJSGlFKUaBVLvmgWR0CxjUeiJwbVdX2UKGgGaAloD0MIgXhdv+BEb0CUhpRSlGgVS7poFkdAsY1IzyjHn3V9lChoBmgJaA9DCJxtbkxPWHJAlIaUUpRoFUuqaBZHQLGNTSmIj4Z1fZQoaAZoCWgPQwgCY30DU1pxQJSGlFKUaBVLumgWR0CxjXYyj59FdX2UKGgGaAloD0MI9G+X/bqwcECUhpRSlGgVS7RoFkdAsY159/jKgnV9lChoBmgJaA9DCHeE04KX93JAlIaUUpRoFUvPaBZHQLGNfZIg/1R1fZQoaAZoCWgPQwgiNe1imh5zQJSGlFKUaBVLzWgWR0CxjZuQyRCAdX2UKGgGaAloD0MIqio0EEu6ckCUhpRSlGgVS7JoFkdAsY2Zkf9xZXV9lChoBmgJaA9DCKSpnsw/RXBAlIaUUpRoFUu0aBZHQLGN1W4Vh1F1fZQoaAZoCWgPQwioN6Pm625wQJSGlFKUaBVLoGgWR0Cxjdt7fHghdX2UKGgGaAloD0MIL4UHzW4QcUCUhpRSlGgVS8doFkdAsY4QnssxwnV9lChoBmgJaA9DCPm9TX+2pnBAlIaUUpRoFUu6aBZHQLGOFmVJL/V1fZQoaAZoCWgPQwjN5nEYTK9vQJSGlFKUaBVLqmgWR0CxjiPIGQjmdX2UKGgGaAloD0MIFXMQdDRacUCUhpRSlGgVS69oFkdAsY4u7wrlNnV9lChoBmgJaA9DCNsV+mDZ3XBAlIaUUpRoFUu5aBZHQLGOOenQ6ZJ1fZQoaAZoCWgPQwiH3Aw3IJ1wQJSGlFKUaBVLqmgWR0CxjkP8MuvmdX2UKGgGaAloD0MItYmT+113cUCUhpRSlGgVS75oFkdAsY5OCz1K5HV9lChoBmgJaA9DCNoaEYwDvXNAlIaUUpRoFUu6aBZHQLGOX9deIEd1fZQoaAZoCWgPQwjU8gNXefdvQJSGlFKUaBVLx2gWR0CxjoQ1ivxIdX2UKGgGaAloD0MIgV64cyFNckCUhpRSlGgVS9NoFkdAsY6Y7YChe3V9lChoBmgJaA9DCFeVfVdEDXJAlIaUUpRoFUuwaBZHQLGOslLOAy51fZQoaAZoCWgPQwg8vr1rECFxQJSGlFKUaBVL1GgWR0CxjrEdq+JxdX2UKGgGaAloD0MIYMyWrAo3dECUhpRSlGgVS9RoFkdAsY7DfbblBHV9lChoBmgJaA9DCGlwW1t48XFAlIaUUpRoFUvNaBZHQLGPBRGMGX51fZQoaAZoCWgPQwgOZhNg2N1uQJSGlFKUaBVLrGgWR0Cxjx9xMnJDdX2UKGgGaAloD0MIwTdNn511cECUhpRSlGgVS7xoFkdAsY8jUI9kjHV9lChoBmgJaA9DCHIaogr/gHNAlIaUUpRoFUvBaBZHQLGPN6NlyzZ1fZQoaAZoCWgPQwi2vd2SXE9yQJSGlFKUaBVLxGgWR0Cxj0M4YJmedX2UKGgGaAloD0MIfxR15p6nckCUhpRSlGgVS8toFkdAsY9uQr+YMXV9lChoBmgJaA9DCMkAUMUNmHFAlIaUUpRoFUulaBZHQLGPg4+KTB91fZQoaAZoCWgPQwgbuAN1CqZxQJSGlFKUaBVLzmgWR0Cxj42yC4BndX2UKGgGaAloD0MI0nDK3PyIb0CUhpRSlGgVS7poFkdAsY+Tr1M/QnV9lChoBmgJaA9DCGhYjLrWWHNAlIaUUpRoFUvOaBZHQLGPlPBBRht1fZQoaAZoCWgPQwj6CtKMxRdoQJSGlFKUaBVN6ANoFkdAsY/KflIVd3V9lChoBmgJaA9DCN/eNegLmXNAlIaUUpRoFUu5aBZHQLGP7O1v2oN1fZQoaAZoCWgPQwiYMQVr3PtzQJSGlFKUaBVL02gWR0Cxj/FAJLM+dX2UKGgGaAloD0MIzEOmfEiHdECUhpRSlGgVS9RoFkdAsY/wljVhC3V9lChoBmgJaA9DCHXIzXBDVXJAlIaUUpRoFUvDaBZHQLGQDz/p+tt1fZQoaAZoCWgPQwgTgH9KFQJ0QJSGlFKUaBVLzmgWR0CxkBPwZwXJdX2UKGgGaAloD0MIqaROQJNQc0CUhpRSlGgVS9JoFkdAsZAZIMBp6HV9lChoBmgJaA9DCI0mF2MgHHJAlIaUUpRoFUu4aBZHQLGQMRSP2f11fZQoaAZoCWgPQwiPGhNiLk1wQJSGlFKUaBVLyWgWR0CxkF5jhDPXdX2UKGgGaAloD0MIAKlNnJwFdECUhpRSlGgVS7hoFkdAsZBl/5LytnV9lChoBmgJaA9DCB08E5oka3NAlIaUUpRoFUu+aBZHQLGQijnV5KR1fZQoaAZoCWgPQwjYDHBB9s1zQJSGlFKUaBVLuWgWR0CxkJB5Pdl/dX2UKGgGaAloD0MIXOMz2X97c0CUhpRSlGgVS8ZoFkdAsZCWqn3tbHV9lChoBmgJaA9DCAGkNnHyuXJAlIaUUpRoFUu4aBZHQLGQlw9JSR91fZQoaAZoCWgPQwiyEvOs5NpxQJSGlFKUaBVLoGgWR0CxkJ1tXPqtdX2UKGgGaAloD0MISkVj7e8BcUCUhpRSlGgVS7loFkdAsZClpfx+a3V9lChoBmgJaA9DCMCxZ89l/HFAlIaUUpRoFUuvaBZHQLGQum8M/hV1fZQoaAZoCWgPQwguPZrqydJyQJSGlFKUaBVL02gWR0CxkNRxYJVsdX2UKGgGaAloD0MIaVVLOkq5ckCUhpRSlGgVS8toFkdAsZDrDFZPmHV9lChoBmgJaA9DCDvCacHLCnNAlIaUUpRoFUu0aBZHQLGQ8t/WlM11fZQoaAZoCWgPQwgZ5C7C1AVyQJSGlFKUaBVLu2gWR0CxkQWNvOyFdX2UKGgGaAloD0MIup7ouvCAcUCUhpRSlGgVS5loFkdAsZEIhbGFSXV9lChoBmgJaA9DCLTIdr5f9nFAlIaUUpRoFUuqaBZHQLGRIT4tYjl1fZQoaAZoCWgPQwjA54cRAhxyQJSGlFKUaBVLw2gWR0CxkS1PJq7AdX2UKGgGaAloD0MI/YhfsQbgckCUhpRSlGgVS6toFkdAsZE+VII4VHV9lChoBmgJaA9DCG2sxDxr73BAlIaUUpRoFUuzaBZHQLGRZsVtXPt1fZQoaAZoCWgPQwhMwRpn0wVzQJSGlFKUaBVLq2gWR0CxkYA1aW5ZdX2UKGgGaAloD0MIFw0Zj5KXckCUhpRSlGgVS6JoFkdAsZGHK0UoKHV9lChoBmgJaA9DCPlp3JvfJnJAlIaUUpRoFUupaBZHQLGRjTEBKcx1fZQoaAZoCWgPQwjZP08Dxh1wQJSGlFKUaBVLwGgWR0CxkZe6NEPUdX2UKGgGaAloD0MIbApkdhYlckCUhpRSlGgVS7JoFkdAsZG3Olfqo3V9lChoBmgJaA9DCDEL7ZzmSHFAlIaUUpRoFUuwaBZHQLGR3hddE9d1fZQoaAZoCWgPQwitbYrHRQ5xQJSGlFKUaBVLp2gWR0CxkeGHUMG5dX2UKGgGaAloD0MI7s7abZeob0CUhpRSlGgVS6JoFkdAsZH8aCL/CXV9lChoBmgJaA9DCBK9jGL50HNAlIaUUpRoFUu7aBZHQLGSIh3JPqN1fZQoaAZoCWgPQwhOtRZmoQRyQJSGlFKUaBVLwmgWR0CxkjmG7BfsdX2UKGgGaAloD0MIJ6JfW/9/cECUhpRSlGgVS8BoFkdAsZJVI1+AmXV9lChoBmgJaA9DCMizy7c+WHNAlIaUUpRoFUvAaBZHQLGSc30wrUd1fZQoaAZoCWgPQwidTNwqyGxwQJSGlFKUaBVLtGgWR0CxknxyS3b3dX2UKGgGaAloD0MIDW0ANqCFckCUhpRSlGgVS9BoFkdAsZKCzAvcrXV9lChoBmgJaA9DCBJosKnzlXBAlIaUUpRoFUuraBZHQLGSjRHf/FR1fZQoaAZoCWgPQwgv3/qw3uBwQJSGlFKUaBVLtWgWR0Cxkrujh1kldWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 1540,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 128,
86
+ "n_epochs": 20,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:025dc434926139e9b928a543f114b75905f785c2ac20b7db42d4afea992fe04b
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9324a514b410a9e97c15fff9dce006766cc1504ef7bcd1a3bc2699dbf98fb86
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e9f4961f44126c4384ced71fc05640a971e822929c272b1db7296a20361aa852
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d79f4f4be3cd467b07c781b0b93f41164f1520c84b655dba66bceddd08e2095
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d2f8b14aeaa91b697d86f0ba32e55d73fb151d76ec61d10025c7cbe448c8cba
3
- size 217698
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d287af15bbe19dc3cedbf4e3fb7c4a97b9eb1d1ef6de371051e4e8beb407f6
3
+ size 181979
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 276.4043421834741, "std_reward": 17.008105282504225, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T16:03:30.598942"}
 
1
+ {"mean_reward": 287.8082792779464, "std_reward": 16.566896397053558, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T19:47:37.546698"}