Improve model card
#1
by
nielsr
HF staff
- opened
README.md
CHANGED
@@ -1,3 +1,134 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: feature-extraction
|
4 |
+
---
|
5 |
+
|
6 |
+
# UniTok: A Unified Tokenizer for Visual Generation and Understanding
|
7 |
+
|
8 |
+
This repository contains UniTok, a unified visual tokenizer for both image generation and understanding tasks, as presented in [UniTok: A Unified Tokenizer for Visual Generation and Understanding](https://hf.co/papers/2502.20321).
|
9 |
+
|
10 |
+
Project Page: https://foundationvision.github.io/UniTok/
|
11 |
+
|
12 |
+
Code: https://github.com/FoundationVision/UniTok
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+
UniTok encodes fine-grained details for generation and captures high-level semantics for understanding. It's compatible with autoregressive generative models (e.g., LlamaGen), multimodal understanding models (e.g., LLaVA), and unified MLLMs (e.g., Chameleon and Liquid).
|
17 |
+
|
18 |
+
|
19 |
+
Built upon UniTok, we construct an MLLM capable of both multimodal generation and understanding, which sets a new state-of-the-art among unified autoregressive MLLMs. The weights of our MLLM will be released soon.
|
20 |
+
|
21 |
+

|
22 |
+
|
23 |
+
## Performance
|
24 |
+
|
25 |
+
<table>
|
26 |
+
<thead>
|
27 |
+
<tr>
|
28 |
+
<th>Method</th>
|
29 |
+
<th>#Tokens</th>
|
30 |
+
<th>rFID ↓</th>
|
31 |
+
<th>Accuracy</th>
|
32 |
+
</tr>
|
33 |
+
</thead>
|
34 |
+
<tbody>
|
35 |
+
<tr>
|
36 |
+
<td colspan="4"><i>VQVAE Model</i></td>
|
37 |
+
</tr>
|
38 |
+
<tr align="center">
|
39 |
+
<td>VQ-GAN</td>
|
40 |
+
<td>256</td>
|
41 |
+
<td>4.98</td>
|
42 |
+
<td>--</td>
|
43 |
+
</tr>
|
44 |
+
<tr align="center">
|
45 |
+
<td>RQ-VAE</td>
|
46 |
+
<td>256</td>
|
47 |
+
<td>1.30</td>
|
48 |
+
<td>--</td>
|
49 |
+
</tr>
|
50 |
+
<tr align="center">
|
51 |
+
<td>VAR</td>
|
52 |
+
<td>680</td>
|
53 |
+
<td>0.90</td>
|
54 |
+
<td>--</td>
|
55 |
+
</tr>
|
56 |
+
<tr>
|
57 |
+
<td colspan="4"><i>CLIP Model</i></td>
|
58 |
+
</tr>
|
59 |
+
<tr align="center">
|
60 |
+
<td>CLIP</td>
|
61 |
+
<td>256</td>
|
62 |
+
<td>--</td>
|
63 |
+
<td>76.2</td>
|
64 |
+
</tr>
|
65 |
+
<tr align="center">
|
66 |
+
<td>SigLIP</td>
|
67 |
+
<td>256</td>
|
68 |
+
<td>--</td>
|
69 |
+
<td>80.5</td>
|
70 |
+
</tr>
|
71 |
+
<tr align="center">
|
72 |
+
<td>ViTamin</td>
|
73 |
+
<td>256</td>
|
74 |
+
<td>--</td>
|
75 |
+
<td>81.2</td>
|
76 |
+
</tr>
|
77 |
+
<tr>
|
78 |
+
<td colspan="4"><i>Unified Model</i></td>
|
79 |
+
</tr>
|
80 |
+
<tr align="center">
|
81 |
+
<td>TokenFlow †</td>
|
82 |
+
<td>680</td>
|
83 |
+
<td>1.37</td>
|
84 |
+
<td>--</td>
|
85 |
+
</tr>
|
86 |
+
<tr align="center">
|
87 |
+
<td>VILA-U †</td>
|
88 |
+
<td>256</td>
|
89 |
+
<td>1.80</td>
|
90 |
+
<td>73.3</td>
|
91 |
+
</tr>
|
92 |
+
<tr align="center">
|
93 |
+
<td>UniTok</td>
|
94 |
+
<td>256</td>
|
95 |
+
<td>0.39</td>
|
96 |
+
<td>70.5</td>
|
97 |
+
</tr>
|
98 |
+
<tr align="center">
|
99 |
+
<td>UniTok †</td>
|
100 |
+
<td>256</td>
|
101 |
+
<td>0.38</td>
|
102 |
+
<td>78.6</td>
|
103 |
+
</tr>
|
104 |
+
</tbody>
|
105 |
+
</table>
|
106 |
+
|
107 |
+
|
108 |
+
† indicates the model uses pretrained CLIP weights for initialization. Although CLIP weight initialization boosts ImageNet zero-shot accuracy,
|
109 |
+
we notice that random initialization leads to better downstream understanding performance.
|
110 |
+
We thus release the model checkpoint of UniTok that is trained from scratch.
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
## Model Weights
|
115 |
+
|
116 |
+
| Model | Res. | #Token | Code Shape | rFID | Checkpoint |
|
117 |
+
|:------------:|:----:|:------:|:-------------------------:|:----:|:------------:|
|
118 |
+
| UniTok-Large | 256 | 256 | 16 $\times$ 16 $\times$ 8 | 0.39 | [Download](https://huggingface.co/FoundationVision/UniTok/blob/main/unitok_tokenizer.pth) |
|
119 |
+
|
120 |
+
|
121 |
+
## Usage
|
122 |
+
|
123 |
+
(... rest of README content ...)
|
124 |
+
|
125 |
+
## Citation
|
126 |
+
|
127 |
+
```bibtex
|
128 |
+
@article{unitok,
|
129 |
+
title={UniTok: A Unified Tokenizer for Visual Generation and Understanding},
|
130 |
+
author={Ma, Chuofan and Jiang, Yi and Wu, Junfeng and Yang, Jihan and Yu, Xin and Yuan, Zehuan and Peng, Bingyue and Qi, Xiaojuan},
|
131 |
+
journal={arXiv preprint arXiv:2502.20321},
|
132 |
+
year={2025}
|
133 |
+
}
|
134 |
+
```
|