|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import os |
|
from util import * |
|
|
|
|
|
class Face_3DMM(nn.Module): |
|
def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num): |
|
super(Face_3DMM, self).__init__() |
|
|
|
|
|
|
|
self.point_num = point_num |
|
DMM_info = np.load( |
|
os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True |
|
).item() |
|
base_id = DMM_info["b_shape"][:id_dim, :] |
|
mu_id = DMM_info["mu_shape"] |
|
base_exp = DMM_info["b_exp"][:exp_dim, :] |
|
mu_exp = DMM_info["mu_exp"] |
|
mu = mu_id + mu_exp |
|
mu = mu.reshape(-1, 3) |
|
for i in range(3): |
|
mu[:, i] -= np.mean(mu[:, i]) |
|
mu = mu.reshape(-1) |
|
self.base_id = torch.as_tensor(base_id).cuda() / 100000.0 |
|
self.base_exp = torch.as_tensor(base_exp).cuda() / 100000.0 |
|
self.mu = torch.as_tensor(mu).cuda() / 100000.0 |
|
base_tex = DMM_info["b_tex"][:tex_dim, :] |
|
mu_tex = DMM_info["mu_tex"] |
|
self.base_tex = torch.as_tensor(base_tex).cuda() |
|
self.mu_tex = torch.as_tensor(mu_tex).cuda() |
|
sig_id = DMM_info["sig_shape"][:id_dim] |
|
sig_tex = DMM_info["sig_tex"][:tex_dim] |
|
sig_exp = DMM_info["sig_exp"][:exp_dim] |
|
self.sig_id = torch.as_tensor(sig_id).cuda() |
|
self.sig_tex = torch.as_tensor(sig_tex).cuda() |
|
self.sig_exp = torch.as_tensor(sig_exp).cuda() |
|
|
|
keys_info = np.load( |
|
os.path.join(modelpath, "keys_info.npy"), allow_pickle=True |
|
).item() |
|
self.keyinds = torch.as_tensor(keys_info["keyinds"]).cuda() |
|
self.left_contours = torch.as_tensor(keys_info["left_contour"]).cuda() |
|
self.right_contours = torch.as_tensor(keys_info["right_contour"]).cuda() |
|
self.rigid_ids = torch.as_tensor(keys_info["rigid_ids"]).cuda() |
|
|
|
def get_3dlandmarks(self, id_para, exp_para, euler_angle, trans, focal_length, cxy): |
|
id_para = id_para * self.sig_id |
|
exp_para = exp_para * self.sig_exp |
|
batch_size = id_para.shape[0] |
|
num_per_contour = self.left_contours.shape[1] |
|
left_contours_flat = self.left_contours.reshape(-1) |
|
right_contours_flat = self.right_contours.reshape(-1) |
|
sel_index = torch.cat( |
|
( |
|
3 * left_contours_flat.unsqueeze(1), |
|
3 * left_contours_flat.unsqueeze(1) + 1, |
|
3 * left_contours_flat.unsqueeze(1) + 2, |
|
), |
|
dim=1, |
|
).reshape(-1) |
|
left_geometry = ( |
|
torch.mm(id_para, self.base_id[:, sel_index]) |
|
+ torch.mm(exp_para, self.base_exp[:, sel_index]) |
|
+ self.mu[sel_index] |
|
) |
|
left_geometry = left_geometry.view(batch_size, -1, 3) |
|
proj_x = forward_transform( |
|
left_geometry, euler_angle, trans, focal_length, cxy |
|
)[:, :, 0] |
|
proj_x = proj_x.reshape(batch_size, 8, num_per_contour) |
|
arg_min = proj_x.argmin(dim=2) |
|
left_geometry = left_geometry.view(batch_size * 8, num_per_contour, 3) |
|
left_3dlands = left_geometry[ |
|
torch.arange(batch_size * 8), arg_min.view(-1), : |
|
].view(batch_size, 8, 3) |
|
|
|
sel_index = torch.cat( |
|
( |
|
3 * right_contours_flat.unsqueeze(1), |
|
3 * right_contours_flat.unsqueeze(1) + 1, |
|
3 * right_contours_flat.unsqueeze(1) + 2, |
|
), |
|
dim=1, |
|
).reshape(-1) |
|
right_geometry = ( |
|
torch.mm(id_para, self.base_id[:, sel_index]) |
|
+ torch.mm(exp_para, self.base_exp[:, sel_index]) |
|
+ self.mu[sel_index] |
|
) |
|
right_geometry = right_geometry.view(batch_size, -1, 3) |
|
proj_x = forward_transform( |
|
right_geometry, euler_angle, trans, focal_length, cxy |
|
)[:, :, 0] |
|
proj_x = proj_x.reshape(batch_size, 8, num_per_contour) |
|
arg_max = proj_x.argmax(dim=2) |
|
right_geometry = right_geometry.view(batch_size * 8, num_per_contour, 3) |
|
right_3dlands = right_geometry[ |
|
torch.arange(batch_size * 8), arg_max.view(-1), : |
|
].view(batch_size, 8, 3) |
|
|
|
sel_index = torch.cat( |
|
( |
|
3 * self.keyinds.unsqueeze(1), |
|
3 * self.keyinds.unsqueeze(1) + 1, |
|
3 * self.keyinds.unsqueeze(1) + 2, |
|
), |
|
dim=1, |
|
).reshape(-1) |
|
geometry = ( |
|
torch.mm(id_para, self.base_id[:, sel_index]) |
|
+ torch.mm(exp_para, self.base_exp[:, sel_index]) |
|
+ self.mu[sel_index] |
|
) |
|
lands_3d = geometry.view(-1, self.keyinds.shape[0], 3) |
|
lands_3d[:, :8, :] = left_3dlands |
|
lands_3d[:, 9:17, :] = right_3dlands |
|
return lands_3d |
|
|
|
def forward_geo_sub(self, id_para, exp_para, sub_index): |
|
id_para = id_para * self.sig_id |
|
exp_para = exp_para * self.sig_exp |
|
sel_index = torch.cat( |
|
( |
|
3 * sub_index.unsqueeze(1), |
|
3 * sub_index.unsqueeze(1) + 1, |
|
3 * sub_index.unsqueeze(1) + 2, |
|
), |
|
dim=1, |
|
).reshape(-1) |
|
geometry = ( |
|
torch.mm(id_para, self.base_id[:, sel_index]) |
|
+ torch.mm(exp_para, self.base_exp[:, sel_index]) |
|
+ self.mu[sel_index] |
|
) |
|
return geometry.reshape(-1, sub_index.shape[0], 3) |
|
|
|
def forward_geo(self, id_para, exp_para): |
|
id_para = id_para * self.sig_id |
|
exp_para = exp_para * self.sig_exp |
|
geometry = ( |
|
torch.mm(id_para, self.base_id) |
|
+ torch.mm(exp_para, self.base_exp) |
|
+ self.mu |
|
) |
|
return geometry.reshape(-1, self.point_num, 3) |
|
|
|
def forward_tex(self, tex_para): |
|
tex_para = tex_para * self.sig_tex |
|
texture = torch.mm(tex_para, self.base_tex) + self.mu_tex |
|
return texture.reshape(-1, self.point_num, 3) |
|
|