Kex
Collection
Models and datasets created as part of Bachelor thesis
β’
16 items
β’
Updated
SwedishBeagle-dare is a merge of the following models using LazyMergekit:
models:
- model: mlabonne/NeuralBeagle14-7B
# No parameters necessary for base model
- model: timpal0l/Mistral-7B-v0.1-flashback-v2
parameters:
density: 0.53
weight: 0.3
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
parameters:
density: 0.53
weight: 0.4
- model: Nexusflow/Starling-LM-7B-beta
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: mlabonne/NeuralBeagle14-7B
parameters:
int8_mask: true
dtype: bfloat16
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "FredrikBL/SwedishBeagle-dare"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])