bert-base-multilingual-cased-ptbr

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1647
  • Accuracy: 0.7960
  • F1 Binary: 0.4699
  • Precision: 0.3799
  • Recall: 0.6158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 33
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Binary Precision Recall
No log 1.0 167 0.1285 0.6951 0.4180 0.2904 0.7455
No log 2.0 334 0.1304 0.7048 0.4122 0.2913 0.7048
0.1094 3.0 501 0.1223 0.7336 0.4477 0.3218 0.7354
0.1094 4.0 668 0.1647 0.7960 0.4699 0.3799 0.6158

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
11
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for FrinzTheCoder/bert-base-multilingual-cased-ptbr

Finetuned
(690)
this model