Uploaded model
- Developed by: Fuka1064
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
'''Python
from unsloth import FastLanguageModel import torch import json
model_name = "Fuka1064/llm-jp-3-13b-finetune-2"
max_seq_length = 2048 dtype = None load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = "your_token", ) FastLanguageModel.for_inference(model)
datasets = [] with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""
from tqdm import tqdm
FastLanguageModel.for_inference(model)
results = [] for dt in tqdm(datasets): input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open(f"output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')
'''
Model tree for Fuka1064/llm-jp-3-13b-finetune-2
Base model
llm-jp/llm-jp-3-13b