metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/all-MiniLM-L6-v2
metrics:
- accuracy
widget:
- text: >-
hp:game yg grafiknya standar boros batrai bikin hp cepat panas game
satunya brawlstar ga
- text: >-
game:game cocok indonesia gw main game dibilang berat squad buster
jaringan game berat bagus squad buster main koneksi terputus koneksi aman
aman aja mohon perbaiki jaringan
- text: >-
sinyal:prmainannya bagus sinyal diperbaiki maen game online gak bagus2 aja
pingnya eh maen squad busters jaringannya hilang2 pas match klok sinyal
udah hilang masuk tulisan server konek muat ulang gak masuk in game saran
tolong diperbaiki ya min klok grafik gameplay udah bagus
- text: >-
saran semoga game:gamenya bagus kendala game nya kadang kadang suka
jaringan jaringan bagus saran semoga game nya ditingkatkan disaat update
- text: >-
gameplay:gameplay nya bagus gk match nya optimal main kadang suka lag gitu
sinyal nya bagus tolong supercell perbaiki sinyal
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8316929133858267
name: Accuracy
SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: Funnyworld1412/ABSA_mpnet_MiniLM-L6-aspect
- SetFitABSA Polarity Model: Funnyworld1412/ABSA_mpnet_MiniLM-L6-polarity
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8317 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Funnyworld1412/ABSA_mpnet_MiniLM-L6-aspect",
"Funnyworld1412/ABSA_mpnet_MiniLM-L6-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 29.9357 | 80 |
Label | Training Sample Count |
---|---|
no aspect | 3834 |
aspect | 1266 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.2801 | - |
0.0039 | 50 | 0.2365 | - |
0.0078 | 100 | 0.1068 | - |
0.0118 | 150 | 0.3401 | - |
0.0157 | 200 | 0.2112 | - |
0.0196 | 250 | 0.3529 | - |
0.0235 | 300 | 0.2338 | - |
0.0275 | 350 | 0.2039 | - |
0.0314 | 400 | 0.2006 | - |
0.0353 | 450 | 0.2939 | - |
0.0392 | 500 | 0.2053 | - |
0.0431 | 550 | 0.2036 | - |
0.0471 | 600 | 0.2229 | - |
0.0510 | 650 | 0.105 | - |
0.0549 | 700 | 0.2222 | - |
0.0588 | 750 | 0.1815 | - |
0.0627 | 800 | 0.2915 | - |
0.0667 | 850 | 0.276 | - |
0.0706 | 900 | 0.1682 | - |
0.0745 | 950 | 0.2328 | - |
0.0784 | 1000 | 0.2422 | - |
0.0824 | 1050 | 0.2753 | - |
0.0863 | 1100 | 0.2292 | - |
0.0902 | 1150 | 0.0791 | - |
0.0941 | 1200 | 0.3849 | - |
0.0980 | 1250 | 0.0964 | - |
0.1020 | 1300 | 0.1612 | - |
0.1059 | 1350 | 0.2755 | - |
0.1098 | 1400 | 0.1133 | - |
0.1137 | 1450 | 0.038 | - |
0.1176 | 1500 | 0.3195 | - |
0.1216 | 1550 | 0.0091 | - |
0.1255 | 1600 | 0.3148 | - |
0.1294 | 1650 | 0.1693 | - |
0.1333 | 1700 | 0.2411 | - |
0.1373 | 1750 | 0.2463 | - |
0.1412 | 1800 | 0.2807 | - |
0.1451 | 1850 | 0.112 | - |
0.1490 | 1900 | 0.2623 | - |
0.1529 | 1950 | 0.2465 | - |
0.1569 | 2000 | 0.4591 | - |
0.1608 | 2050 | 0.0556 | - |
0.1647 | 2100 | 0.0962 | - |
0.1686 | 2150 | 0.4525 | - |
0.1725 | 2200 | 0.2674 | - |
0.1765 | 2250 | 0.1513 | - |
0.1804 | 2300 | 0.3457 | - |
0.1843 | 2350 | 0.1415 | - |
0.1882 | 2400 | 0.0454 | - |
0.1922 | 2450 | 0.0156 | - |
0.1961 | 2500 | 0.2741 | - |
0.2 | 2550 | 0.1334 | - |
0.2039 | 2600 | 0.1838 | - |
0.2078 | 2650 | 0.1346 | - |
0.2118 | 2700 | 0.1022 | - |
0.2157 | 2750 | 0.3999 | - |
0.2196 | 2800 | 0.0953 | - |
0.2235 | 2850 | 0.1201 | - |
0.2275 | 2900 | 0.111 | - |
0.2314 | 2950 | 0.1081 | - |
0.2353 | 3000 | 0.1926 | - |
0.2392 | 3050 | 0.1047 | - |
0.2431 | 3100 | 0.2367 | - |
0.2471 | 3150 | 0.2034 | - |
0.2510 | 3200 | 0.0824 | - |
0.2549 | 3250 | 0.0338 | - |
0.2588 | 3300 | 0.2468 | - |
0.2627 | 3350 | 0.0082 | - |
0.2667 | 3400 | 0.0023 | - |
0.2706 | 3450 | 0.1106 | - |
0.2745 | 3500 | 0.1315 | - |
0.2784 | 3550 | 0.004 | - |
0.2824 | 3600 | 0.0836 | - |
0.2863 | 3650 | 0.2716 | - |
0.2902 | 3700 | 0.1873 | - |
0.2941 | 3750 | 0.4066 | - |
0.2980 | 3800 | 0.1448 | - |
0.3020 | 3850 | 0.0137 | - |
0.3059 | 3900 | 0.3471 | - |
0.3098 | 3950 | 0.1144 | - |
0.3137 | 4000 | 0.0596 | - |
0.3176 | 4050 | 0.0377 | - |
0.3216 | 4100 | 0.3316 | - |
0.3255 | 4150 | 0.0709 | - |
0.3294 | 4200 | 0.0515 | - |
0.3333 | 4250 | 0.2029 | - |
0.3373 | 4300 | 0.1191 | - |
0.3412 | 4350 | 0.2397 | - |
0.3451 | 4400 | 0.492 | - |
0.3490 | 4450 | 0.1178 | - |
0.3529 | 4500 | 0.3647 | - |
0.3569 | 4550 | 0.0098 | - |
0.3608 | 4600 | 0.2114 | - |
0.3647 | 4650 | 0.2392 | - |
0.3686 | 4700 | 0.2194 | - |
0.3725 | 4750 | 0.0578 | - |
0.3765 | 4800 | 0.0771 | - |
0.3804 | 4850 | 0.1582 | - |
0.3843 | 4900 | 0.0643 | - |
0.3882 | 4950 | 0.1372 | - |
0.3922 | 5000 | 0.0308 | - |
0.3961 | 5050 | 0.1247 | - |
0.4 | 5100 | 0.3076 | - |
0.4039 | 5150 | 0.1152 | - |
0.4078 | 5200 | 0.2112 | - |
0.4118 | 5250 | 0.0042 | - |
0.4157 | 5300 | 0.0869 | - |
0.4196 | 5350 | 0.0196 | - |
0.4235 | 5400 | 0.2406 | - |
0.4275 | 5450 | 0.3306 | - |
0.4314 | 5500 | 0.2328 | - |
0.4353 | 5550 | 0.008 | - |
0.4392 | 5600 | 0.0388 | - |
0.4431 | 5650 | 0.3812 | - |
0.4471 | 5700 | 0.6268 | - |
0.4510 | 5750 | 0.4426 | - |
0.4549 | 5800 | 0.1407 | - |
0.4588 | 5850 | 0.297 | - |
0.4627 | 5900 | 0.2657 | - |
0.4667 | 5950 | 0.1767 | - |
0.4706 | 6000 | 0.0152 | - |
0.4745 | 6050 | 0.2344 | - |
0.4784 | 6100 | 0.0447 | - |
0.4824 | 6150 | 0.0675 | - |
0.4863 | 6200 | 0.3086 | - |
0.4902 | 6250 | 0.5258 | - |
0.4941 | 6300 | 0.0826 | - |
0.4980 | 6350 | 0.0079 | - |
0.5020 | 6400 | 0.1817 | - |
0.5059 | 6450 | 0.0767 | - |
0.5098 | 6500 | 0.0221 | - |
0.5137 | 6550 | 0.0419 | - |
0.5176 | 6600 | 0.2452 | - |
0.5216 | 6650 | 0.0232 | - |
0.5255 | 6700 | 0.0804 | - |
0.5294 | 6750 | 0.1752 | - |
0.5333 | 6800 | 0.0127 | - |
0.5373 | 6850 | 0.0454 | - |
0.5412 | 6900 | 0.1759 | - |
0.5451 | 6950 | 0.0435 | - |
0.5490 | 7000 | 0.0109 | - |
0.5529 | 7050 | 0.0162 | - |
0.5569 | 7100 | 0.0133 | - |
0.5608 | 7150 | 0.2363 | - |
0.5647 | 7200 | 0.4987 | - |
0.5686 | 7250 | 0.1149 | - |
0.5725 | 7300 | 0.4613 | - |
0.5765 | 7350 | 0.3837 | - |
0.5804 | 7400 | 0.2439 | - |
0.5843 | 7450 | 0.0014 | - |
0.5882 | 7500 | 0.0177 | - |
0.5922 | 7550 | 0.0051 | - |
0.5961 | 7600 | 0.0418 | - |
0.6 | 7650 | 0.0061 | - |
0.6039 | 7700 | 0.2205 | - |
0.6078 | 7750 | 0.1769 | - |
0.6118 | 7800 | 0.0071 | - |
0.6157 | 7850 | 0.2271 | - |
0.6196 | 7900 | 0.3049 | - |
0.6235 | 7950 | 0.0016 | - |
0.6275 | 8000 | 0.2263 | - |
0.6314 | 8050 | 0.0057 | - |
0.6353 | 8100 | 0.1408 | - |
0.6392 | 8150 | 0.0303 | - |
0.6431 | 8200 | 0.0026 | - |
0.6471 | 8250 | 0.1743 | - |
0.6510 | 8300 | 0.2078 | - |
0.6549 | 8350 | 0.1764 | - |
0.6588 | 8400 | 0.0127 | - |
0.6627 | 8450 | 0.2435 | - |
0.6667 | 8500 | 0.0527 | - |
0.6706 | 8550 | 0.247 | - |
0.6745 | 8600 | 0.002 | - |
0.6784 | 8650 | 0.0087 | - |
0.6824 | 8700 | 0.1866 | - |
0.6863 | 8750 | 0.0087 | - |
0.6902 | 8800 | 0.1589 | - |
0.6941 | 8850 | 0.1848 | - |
0.6980 | 8900 | 0.0298 | - |
0.7020 | 8950 | 0.0081 | - |
0.7059 | 9000 | 0.3057 | - |
0.7098 | 9050 | 0.2059 | - |
0.7137 | 9100 | 0.2154 | - |
0.7176 | 9150 | 0.0013 | - |
0.7216 | 9200 | 0.1961 | - |
0.7255 | 9250 | 0.0129 | - |
0.7294 | 9300 | 0.0021 | - |
0.7333 | 9350 | 0.2106 | - |
0.7373 | 9400 | 0.0008 | - |
0.7412 | 9450 | 0.1261 | - |
0.7451 | 9500 | 0.1948 | - |
0.7490 | 9550 | 0.013 | - |
0.7529 | 9600 | 0.208 | - |
0.7569 | 9650 | 0.2382 | - |
0.7608 | 9700 | 0.0054 | - |
0.7647 | 9750 | 0.1869 | - |
0.7686 | 9800 | 0.0334 | - |
0.7725 | 9850 | 0.0197 | - |
0.7765 | 9900 | 0.0057 | - |
0.7804 | 9950 | 0.0056 | - |
0.7843 | 10000 | 0.0043 | - |
0.7882 | 10050 | 0.0025 | - |
0.7922 | 10100 | 0.6808 | - |
0.7961 | 10150 | 0.043 | - |
0.8 | 10200 | 0.0536 | - |
0.8039 | 10250 | 0.2435 | - |
0.8078 | 10300 | 0.0051 | - |
0.8118 | 10350 | 0.0653 | - |
0.8157 | 10400 | 0.017 | - |
0.8196 | 10450 | 0.0036 | - |
0.8235 | 10500 | 0.1561 | - |
0.8275 | 10550 | 0.001 | - |
0.8314 | 10600 | 0.1975 | - |
0.8353 | 10650 | 0.2378 | - |
0.8392 | 10700 | 0.1276 | - |
0.8431 | 10750 | 0.0719 | - |
0.8471 | 10800 | 0.1951 | - |
0.8510 | 10850 | 0.0446 | - |
0.8549 | 10900 | 0.2045 | - |
0.8588 | 10950 | 0.0598 | - |
0.8627 | 11000 | 0.0094 | - |
0.8667 | 11050 | 0.1117 | - |
0.8706 | 11100 | 0.0528 | - |
0.8745 | 11150 | 0.0047 | - |
0.8784 | 11200 | 0.1492 | - |
0.8824 | 11250 | 0.2204 | - |
0.8863 | 11300 | 0.0089 | - |
0.8902 | 11350 | 0.0709 | - |
0.8941 | 11400 | 0.1111 | - |
0.8980 | 11450 | 0.0048 | - |
0.9020 | 11500 | 0.0173 | - |
0.9059 | 11550 | 0.2862 | - |
0.9098 | 11600 | 0.2745 | - |
0.9137 | 11650 | 0.0054 | - |
0.9176 | 11700 | 0.0074 | - |
0.9216 | 11750 | 0.0036 | - |
0.9255 | 11800 | 0.0869 | - |
0.9294 | 11850 | 0.2333 | - |
0.9333 | 11900 | 0.15 | - |
0.9373 | 11950 | 0.066 | - |
0.9412 | 12000 | 0.1742 | - |
0.9451 | 12050 | 0.0009 | - |
0.9490 | 12100 | 0.1246 | - |
0.9529 | 12150 | 0.1674 | - |
0.9569 | 12200 | 0.1937 | - |
0.9608 | 12250 | 0.0724 | - |
0.9647 | 12300 | 0.0044 | - |
0.9686 | 12350 | 0.0013 | - |
0.9725 | 12400 | 0.0313 | - |
0.9765 | 12450 | 0.0925 | - |
0.9804 | 12500 | 0.1742 | - |
0.9843 | 12550 | 0.2294 | - |
0.9882 | 12600 | 0.1073 | - |
0.9922 | 12650 | 0.038 | - |
0.9961 | 12700 | 0.1866 | - |
1.0 | 12750 | 0.0141 | 0.2274 |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}