GBRKNIGHT's picture
Create gradio.py
e8ce01d verified
raw
history blame contribute delete
855 Bytes
import gradio as gr
import spacy
import networkx as nx
# Load your NLP model and graphs
nlp = spacy.load("en_core_web_sm")
G_unreliable = nx.read_graphml('knowledge_graph.graphml')
G_reliable = nx.read_graphml('knowledge_graph_G1.graphml')
def analyze_misinformation(sentence):
misinformation, corrections = analyze_misinformation(sentence, nlp, G_unreliable, G_reliable)
return {"Misinformation": misinformation, "Corrections": corrections if corrections else "No corrections needed"}
interface = gr.Interface(fn=analyze_misinformation,
inputs="text",
outputs=["json"],
title="Misinformation Detection Demo",
description="Detects whether a sentence is likely to contain misinformation.")
if __name__ == "__main__":
interface.launch()