Llama-31-8B_task-1_60-samples_config-1_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.5176 0.8696 5 2.3282
2.1942 1.9130 11 1.9932
1.8164 2.9565 17 1.6236
1.3441 4.0 23 1.1448
0.987 4.8696 28 1.0040
0.9101 5.9130 34 0.9508
0.8517 6.9565 40 0.9197
0.7732 8.0 46 0.8986
0.7365 8.8696 51 0.8973
0.6133 9.9130 57 0.9109
0.5483 10.9565 63 0.9300
0.4109 12.0 69 0.9910
0.285 12.8696 74 1.0815
0.2088 13.9130 80 1.2331
0.1666 14.9565 86 1.4608
0.1074 16.0 92 1.5691

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_60-samples_config-1_full

Adapter
(563)
this model

Collections including GaetanMichelet/Llama-31-8B_task-1_60-samples_config-1_full