MN-LooseCannon-12B-v1
MN-LooseCannon-12B-v1 is a merge of the following models using LazyMergekit:
𧩠Configuration
models:
- model: aetherwiing/MN-12B-Starcannon-v3
parameters:
density: 0.3
weight: 0.75
- model: Sao10K/MN-12B-Lyra-v1
parameters:
density: 0.7
weight: 0.25
merge_method: ties
base_model: aetherwiing/MN-12B-Starcannon-v3
parameters:
normalize: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "GalrionSoftworks/MN-LooseCannon-12B-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.78 |
IFEval (0-Shot) | 54.18 |
BBH (3-Shot) | 29.98 |
MATH Lvl 5 (4-Shot) | 6.50 |
GPQA (0-shot) | 4.70 |
MuSR (0-shot) | 10.96 |
MMLU-PRO (5-shot) | 24.40 |
- Downloads last month
- 1,274
Model tree for GalrionSoftworks/MN-LooseCannon-12B-v1
Merge model
this model
Spaces using GalrionSoftworks/MN-LooseCannon-12B-v1 4
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard54.180
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard29.980
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard6.500
- acc_norm on GPQA (0-shot)Open LLM Leaderboard4.700
- acc_norm on MuSR (0-shot)Open LLM Leaderboard10.960
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard24.400