whisper_small_ru_f / README.md
Garon16's picture
End of training
4cfb8c1 verified
metadata
library_name: transformers
language:
  - ru
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - fsicoli/common_voice_18_0
metrics:
  - wer
model-index:
  - name: Whisper Small CV 18 - Garon
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 18.0 Ru
          type: fsicoli/common_voice_18_0
          config: ru
          split: None
          args: 'split: train, test'
        metrics:
          - name: Wer
            type: wer
            value: 16.3383290187019

Whisper Small CV 18 - Garon

This model is a fine-tuned version of openai/whisper-small on the Common Voice 18.0 Ru dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2906
  • Wer: 16.3383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer
0.2603 1.0 826 0.2231 18.2503
0.1298 2.0 1652 0.2108 17.0453
0.0586 3.0 2478 0.2165 16.8375
0.0271 4.0 3304 0.2315 16.7760
0.0122 5.0 4130 0.2478 16.7864
0.0057 6.0 4956 0.2667 16.5670
0.0029 7.0 5782 0.2727 16.2594
0.0018 8.0 6608 0.2833 16.3743
0.0013 9.0 7434 0.2885 16.2594
0.0011 10.0 8260 0.2906 16.3383

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0