|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- tatsu-lab/alpaca |
|
--- |
|
|
|
This repo contains a low-rank adapter for LLaMA-7b |
|
fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. |
|
|
|
This version of the weights was trained with the following hyperparameters: |
|
|
|
- Epochs: 3 (load from best epoch) |
|
- Batch size: 32 |
|
- Learning rate: 1e-4 |
|
- Lora _r_: 8 |
|
- lora_alpha : 16 |
|
- Lora target modules: q_proj, v_proj |
|
|
|
That is: |
|
|
|
``` |
|
python train_alpaca_lora.py \ |
|
--model_name_or_path decapoda-research/llama-7b-hf \ |
|
--data_path tatsu-lab/alpaca \ |
|
--output_dir work_dir_lora/ \ |
|
--num_train_epochs 3 \ |
|
--per_device_train_batch_size 4 \ |
|
--per_device_eval_batch_size 4 \ |
|
--gradient_accumulation_steps 8 \ |
|
--evaluation_strategy "no" \ |
|
--save_strategy "steps" \ |
|
--save_steps 500 \ |
|
--save_total_limit 5 \ |
|
--learning_rate 1e-4 \ |
|
--weight_decay 0. \ |
|
--warmup_ratio 0.03 \ |
|
--lr_scheduler_type "cosine" \ |
|
--model_max_length 2048 \ |
|
--logging_steps 1 \ |
|
--fp16 True |
|
``` |
|
|
|
Instructions for running it can be found at https://github.com/jianzhnie/open-chatgpt. |
|
|
|
|
|
### Citation |
|
|
|
Please cite the repo if you use the data or code in this repo. |
|
``` |
|
@misc{alpaca, |
|
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, |
|
title = {Stanford Alpaca: An Instruction-following LLaMA model}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, |
|
} |
|
``` |