General-Level-Scorer / predictors /video_comprehension_tasks.py
General-Level
Resolve conflict
0eb3766
from abc import ABC, abstractmethod
from dataclasses import dataclass
import os
from typing import Dict, Any, List
import json
import torch
import tqdm
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import pycocotools.mask as mask_util
import numpy as np
PREFIX = 'data'
PROMPT = {
'VOS': '<image>\nPlease segment the major object in the video.',
'RVOS': '<image>\nPlease segment {}.',
'ActionDet': '<image>\nPlease detect {}.',
'VDE': '<image>\nPlease generate the depth map of the video.',
}
@dataclass
class Instance:
input: Dict[str, Any]
output: Dict[str, Any]
id: str
class BaseTask(ABC):
def __init__(self, task_data: str, model):
self.task_data = task_data
self.model = model
self.task_name = os.path.basename(task_data)
self.data = self._parse_data(task_data)
@abstractmethod
def _parse_data(self, task_data: str) -> List[Instance]:
pass
@abstractmethod
def evaluate(self, results:List[Instance]) -> Dict[str, float]:
pass
@abstractmethod
def run_inference(self) -> List[Instance]:
pass
class TaskVOS(BaseTask):
def _load_video(self, video_path: str) -> List[Image.Image]:
video_frames = []
for frame_file in sorted(os.listdir(video_path)):
if frame_file.endswith('.jpg') or frame_file.endswith('.png'):
frame_path = os.path.join(video_path, frame_file)
video_frames.append(Image.open(frame_path).convert('RGB'))
return video_frames
def _parse_data(self, task_data: str) -> List[Instance]:
json_path = os.path.join(task_data, 'annotation.json')
json_data = json.load(open(json_path, 'r'))
results = []
json_data_data = json_data['data']
for json_item in json_data_data:
input_dict = {}
input_dict['video_folder'] = json_item['input']['video_folder']
input_dict['video'] = self._load_video(os.path.join(task_data, input_dict['video_folder']))
output_dict = {}
output_dict['serilized_masks'] = json_item['output']
output_dict['masks'] = []
for mask_id, mask_data in output_dict['serilized_masks'].items():
mask = mask_util.decode(mask_data['mask'])
output_dict['masks'].append(mask)
instance_id = json_item['id']
results.append(Instance(input=input_dict, output=output_dict, id=instance_id))
return results
def evaluate(self, results:List[Instance]) -> Dict[str, float]:
iou_list = []
for instance in results:
masks = instance.output['masks']
prediction_masks = instance.output['prediction_masks']
assert len(masks) == len(prediction_masks), "Number of masks and prediction masks do not match."
intersection = 0.
union = 0.
for gt_mask, pred_mask in zip(masks, prediction_masks):
intersection += (gt_mask.astype(bool) & pred_mask.astype(bool)).sum()
union += (gt_mask | pred_mask).sum()
iou = intersection / union if union > 0 else 0.0
iou_list.append(iou)
iou_mean = np.mean(iou_list).item() * 100
return {"IoU": iou_mean}
def run_inference(self) -> List[Instance]:
results = []
for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"):
input_data = instance.input
result = self.model.predict_forward(
video=input_data['video'],
text=PROMPT['VOS'],
)
# output postprocessing
output_masks = result['prediction_masks']
instance.output['prediction_masks'] = output_masks[0]
results.append(instance)
return results
class TaskRVOS(BaseTask):
def _load_video(self, video_path: str) -> List[Image.Image]:
video_frames = []
for frame_file in sorted(os.listdir(video_path)):
if frame_file.endswith('.jpg') or frame_file.endswith('.png'):
frame_path = os.path.join(video_path, frame_file)
video_frames.append(Image.open(frame_path).convert('RGB'))
return video_frames
def _parse_data(self, task_data: str) -> List[Instance]:
json_path = os.path.join(task_data, 'annotation.json')
json_data = json.load(open(json_path, 'r'))
results = []
json_data_data = json_data['data']
for json_item in json_data_data:
input_dict = {}
input_dict['video_folder'] = json_item['input']['video_folder']
input_dict['video'] = self._load_video(os.path.join(task_data, input_dict['video_folder']))
input_dict['prompt'] = json_item['input']['prompt']
output_dict = {}
output_dict['serilized_masks'] = json_item['output']
output_dict['masks'] = []
for mask_id, mask_data in output_dict['serilized_masks'].items():
mask = mask_util.decode(mask_data['mask'])
output_dict['masks'].append(mask)
instance_id = json_item['id']
results.append(Instance(input=input_dict, output=output_dict, id=instance_id))
return results
def evaluate(self, results:List[Instance]) -> Dict[str, float]:
iou_list = []
for instance in results:
masks = instance.output['masks']
prediction_masks = instance.output['prediction_masks']
assert len(masks) == len(prediction_masks), "Number of masks and prediction masks do not match."
intersection = 0.
union = 0.
for gt_mask, pred_mask in zip(masks, prediction_masks):
intersection += (gt_mask.astype(bool) & pred_mask.astype(bool)).sum()
union += (gt_mask | pred_mask).sum()
iou = intersection / union if union > 0 else 0.0
iou_list.append(iou)
iou_mean = np.mean(iou_list).item() * 100
return {"IoU": iou_mean}
def run_inference(self) -> List[Instance]:
results = []
for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"):
input_data = instance.input
result = self.model.predict_forward(
video=input_data['video'],
text=PROMPT['RVOS'].format(input_data['prompt']),
)
# output postprocessing
output_masks = result['prediction_masks']
instance.output['prediction_masks'] = output_masks[0]
results.append(instance)
return results
class TaskActionDet(BaseTask):
def _load_video(self, video_path: str) -> List[Image.Image]:
import cv2
cap = cv2.VideoCapture(video_path)
img_list = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_list.append(Image.fromarray(frame).convert('RGB'))
return img_list
def _parse_data(self, task_data: str) -> List[Instance]:
if self.task_name in ['AnimalVG', 'AutoVG', 'HumanVG']:
self.is_vg = True
else:
self.is_vg = False
json_path = os.path.join(task_data, 'annotation.json')
json_data = json.load(open(json_path, 'r'))
results = []
json_data_data = json_data['data']
for json_item in json_data_data:
video_path = os.path.join(self.task_data, 'videos', json_item['video_path'])
image_list = self._load_video(video_path)
assert len(image_list) > 0, f"Video {video_path} has no frames."
if len(image_list) != json_item['frame_count']:
print(f"Warning: Frame count mismatch for video {video_path}. Expected {json_item['frame_count']}, got {len(image_list)}.")
while len(image_list) < json_item['frame_count']:
image_list.append(image_list[-1])
input_dict = {}
input_dict['video'] = image_list
input_dict['prompt'] = json_item['caption']
output_dict = {}
if self.is_vg:
output_dict['tube_start_frame'] = json_item['tube_start_frame']
output_dict['tube_end_frame'] = json_item['tube_end_frame']
else:
output_dict['tube_start_frame'] = json_item['tube_start_frame'] - 1
output_dict['tube_end_frame'] = json_item['tube_end_frame'] - 1
trajectory = json_item['trajectory']
if self.is_vg:
trajectory = [trajectory[frame_id_str]['bbox'] for frame_id_str in trajectory if output_dict['tube_start_frame'] <= int(frame_id_str) < output_dict['tube_end_frame']]
assert len(trajectory) == output_dict['tube_end_frame'] - output_dict['tube_start_frame']
bboxes = []
for _ in range(output_dict['tube_start_frame']):
bboxes.append([0, 0, 0, 0])
# trajectory is a list of [x, y, w, h] for each frame
for item in trajectory:
x, y, w, h = item
bbox = [x, y, x + w, y + h]
bboxes.append(bbox)
for _ in range(output_dict['tube_end_frame'], len(image_list)):
bboxes.append([0, 0, 0, 0])
output_dict['bboxes'] = bboxes
instance_id = json_item['original_video_id']
results.append(Instance(input=input_dict, output=output_dict, id=instance_id))
return results
def evaluate(self, results:List[Instance]) -> Dict[str, float]:
iou_list = []
for instance in results:
boxes = instance.output['bboxes']
prediction_boxes = instance.output['prediction_boxes']
assert len(boxes) == len(prediction_boxes), "Number of boxes and prediction boxes do not match."
iou = 0.
frame_union = 0
for gt_box, pred_box in zip(boxes, prediction_boxes):
gt_box = np.array(gt_box)
pred_box = np.array(pred_box)
if np.all(gt_box == 0) and np.all(pred_box == 0):
continue
frame_union += 1
if np.all(gt_box == 0) or np.all(pred_box == 0):
continue
intersection = np.maximum(0, np.minimum(gt_box[2:], pred_box[2:]) - np.maximum(gt_box[:2], pred_box[:2]))
intersection_area = intersection[0] * intersection[1]
gt_area = (gt_box[2] - gt_box[0]) * (gt_box[3] - gt_box[1])
pred_area = (pred_box[2] - pred_box[0]) * (pred_box[3] - pred_box[1])
union_area = gt_area + pred_area - intersection_area
iou += intersection_area / union_area
if frame_union > 0:
iou /= frame_union
iou_list.append(iou)
iou_mean = np.mean(iou_list).item() * 100
return {"vIoU": iou_mean}
def run_inference(self) -> List[Instance]:
results = []
for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"):
input_data = instance.input
result = self.model.predict_boxes(
video=input_data['video'],
text=PROMPT['ActionDet'].format(input_data['prompt']),
)
# output postprocessing
output_masks = result['prediction_boxes']
instance.output['prediction_boxes'] = output_masks[0]
results.append(instance)
return results
class TaskVDE(BaseTask):
def _load_video(self, video_path: str) -> List[Image.Image]:
import cv2
cap = cv2.VideoCapture(video_path)
img_list = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_list.append(Image.fromarray(frame).convert('RGB'))
return img_list
def _parse_data(self, task_data: str) -> List[Instance]:
json_path = os.path.join(task_data, 'annotation.json')
json_data = json.load(open(json_path, 'r'))
results = []
json_data_data = json_data['data']
for json_item in json_data_data:
video_path = os.path.join(self.task_data, 'video', json_item['input'])
annotation_path = os.path.join(self.task_data, 'depth', json_item['output'])
instance_id = json_item['id']
assert os.path.exists(video_path), f"Video path {video_path} does not exist."
assert os.path.exists(annotation_path), f"Annotation path {annotation_path} does not exist"
input_dict = {}
input_dict['video'] = self._load_video(video_path)
output_dict = {}
output_dict['depth_map'] = np.load(annotation_path)['disparity'] # nf, 1, h, w
assert len(input_dict['video']) == output_dict['depth_map'].shape[0], "Number of video frames and depth map frames do not match."
assert output_dict['depth_map'].ndim == 4, "Depth map should be 4-dimensional (nf, 1, h, w)."
assert input_dict['video'][0].size == (output_dict['depth_map'].shape[3], output_dict['depth_map'].shape[2]), "Video frame size does not match depth map size."
results.append(Instance(input=input_dict, output=output_dict, id=instance_id))
return results
def _abs_relative_difference(self, output, target, valid_mask=None):
actual_output = output[valid_mask]
actual_target = target[valid_mask]
abs_relative_diff = np.abs(actual_output - actual_target) / actual_target
return abs_relative_diff.mean()
def evaluate(self, results:List[Instance]) -> Dict[str, float]:
abs_rel_list = []
dataset_max_depth = 80
for instance in results:
depth_map = instance.output['depth_map']
prediction_depth = instance.output['prediction_depth']
assert depth_map.shape == prediction_depth.shape, "Depth map and prediction depth shape do not match."
# Calculate absolute relative error
gt_disp = depth_map[:, 0]
pred_disp = prediction_depth[:, 0]
# valid mask
valid_mask = np.logical_and(
(gt_disp > 1e-3),
(gt_disp < dataset_max_depth)
)
pred_disp = np.clip(pred_disp, a_min=1e-3, a_max=None)
pred_disp_masked = pred_disp[valid_mask].reshape((-1, 1))
gt_disp_maksed = gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64)
# calc scale and shift
_ones = np.ones_like(pred_disp_masked)
A = np.concatenate([pred_disp_masked, _ones], axis=-1)
X = np.linalg.lstsq(A, gt_disp_maksed, rcond=None)[0]
scale, shift = X # gt = scale * pred + shift
# align
aligned_pred = scale * pred_disp + shift
aligned_pred = np.clip(aligned_pred, a_min=1e-3, a_max=None)
pred_depth = aligned_pred
gt_depth = gt_disp
# metric evaluation, clip to dataset min max
pred_depth = np.clip(
pred_depth, a_min=1e-3, a_max=dataset_max_depth
)
abs_rel = self._abs_relative_difference(
pred_depth,
gt_depth,
valid_mask=valid_mask
)
abs_rel_list.append(abs_rel)
abs_rel_mean = np.mean(abs_rel_list).item()
def sigmoid(x):
return 1 / (1 + np.exp(-x))
score = (sigmoid(0.1 / (abs_rel_mean + 1e-6)) * 2 - 1) * 100
return {"absRel": abs_rel_mean, "score": score}
def run_inference(self) -> List[Instance]:
results = []
for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"):
input_data = instance.input
result = self.model.predict_depth(
video=input_data['video'],
text=PROMPT['VDE'],
)
# output postprocessing
depth_map = result['prediction_depth']
instance.output['prediction_depth'] = depth_map
results.append(instance)
return results
tasks = {
'AnimalVOS': TaskVOS,
'AutoVOS':TaskVOS,
'HumanVOS':TaskVOS,
'SportsVOS':TaskVOS,
## IW
'IWAnimalVOS':TaskVOS,
'IWAutoVOS':TaskVOS,
'IWFurnitureVOS':TaskVOS,
'IWHumanVOS':TaskVOS,
## Street
'AutoStreetVOS':TaskVOS,
'BicycleStreetVOS':TaskVOS,
'HumanStreetVOS':TaskVOS,
# RVOS
'AnimalRVOS':TaskRVOS,
'HumanRVOS':TaskRVOS,
## ReVOS,
'AnimalReVOS':TaskRVOS,
'AutoReVOS': TaskRVOS,
'HumanReVOS': TaskRVOS,
## CReVOS
'AnimalCReVOS': TaskRVOS,
'AutoCReVOS' : TaskRVOS,
'HumanCReVOS': TaskRVOS,
'HumanPartCReVOS': TaskRVOS,
'EquipmentCReVOS': TaskRVOS,
## Action Det
# V-C-10 HCSTVG2
'StaticActionDet': TaskActionDet,
'DynamicActionDet': TaskActionDet,
# V-C-12 VidSTG
'AnimalVG': TaskActionDet,
'AutoVG': TaskActionDet,
'HumanVG': TaskActionDet,
## VDE
'StaticVDE': TaskVDE,
'StreetVDE': TaskVDE,
'SynVDE': TaskVDE,
'DynamicVDE': TaskVDE,
}
def predict_dummy_boxes(video, text):
# Dummy function to simulate box prediction
# In practice, this should call the model's prediction method
num_frames = len(video)
return {
'prediction_boxes': [
[[0,0, 100, 100]] * num_frames, # Example boxes, [0, 0, 0, 0] is empty box
]
}
def predict_dummy_depth(video, text):
# Dummy function to simulate depth prediction
# In practice, this should call the model's prediction method
num_frames = len(video)
width, height = video[0].size
return {
'prediction_depth': np.random.rand(num_frames, 1, height, width).astype(np.float32) * 80 # Random depth values
}
def main(root:str, model_path:str):
metrics = {}
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
model.preparing_for_generation(tokenizer=tokenizer)
model.predict_boxes = predict_dummy_boxes
model.predict_depth = predict_dummy_depth
for task_name in tasks:
task_class = tasks[task_name]
task_data_path = os.path.join(root, task_name)
task_instance = task_class(task_data=task_data_path, model=model)
results = task_instance.run_inference()
evaluation_results = task_instance.evaluate(results)
metrics[task_instance.task_name] = evaluation_results
print(metrics)
if __name__ == "__main__":
# root = os.path.join(PREFIX, "General-Bench-Openset/video/comprehension")
import argparse
parser = argparse.ArgumentParser(description="Run video tasks evaluation.")
parser.add_argument("--model_path", type=str, default='ByteDance/Sa2VA-4B', required=False, help="Model to use for evaluation")
parser.add_argument("--root_path", type=str, default="General-Bench-Openset/video/comprehension", required=False, help="Root path to the dataset")
args = parser.parse_args()
main(args.root_path, args.model_path)