General-Level-Scorer / processors /nlp_processor.py
General-Level
Resolve conflict
0eb3766
import json
import os
import re
import math
import numpy as np
import pandas as pd
from typing import List, Dict, Any, Optional
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge_score import rouge_scorer
from codebleu import calc_codebleu
from utils.data_types import TaskResult, TaskType
class NLPProcessor:
def __init__(self, modality, dataset_dir: str, pred_json_file: str = "prediction.json"):
self.modality = modality
self.dataset_dir = dataset_dir + '/nlp'
self.pred_json_file = pred_json_file
def process(self) -> List[TaskResult]:
results = []
task_dirs = [d for d in os.listdir(self.dataset_dir) if os.path.isdir(os.path.join(self.dataset_dir, d))]
total_tasks = len(task_dirs)
processed_tasks = 0
for task_folder in task_dirs:
folder_path = os.path.join(self.dataset_dir, task_folder)
annotation_path = os.path.join(folder_path, "annotation.json")
prediction_path = os.path.join(folder_path, self.pred_json_file)
if not os.path.exists(annotation_path):
print(f"Skip {task_folder}: annotation.json no exists")
continue
if not os.path.exists(prediction_path):
print(f"Skip {task_folder}: {self.pred_json_file} no exists.")
continue
try:
with open(annotation_path, "r", encoding="utf-8") as f:
task_data = json.load(f)
with open(prediction_path, "r", encoding="utf-8") as f:
predictions_data = json.load(f)
task_result = self._evaluate_task(task_data, predictions_data)
if task_result:
results.append(task_result)
processed_tasks += 1
print(f"Task: {task_folder} (Socre: {task_result.score:.4f})")
else:
print(f"Skip {task_folder}.")
except Exception as e:
print(f"Skip {task_folder}: Error - {e}")
continue
return results
def _evaluate_task(self, task_data: Dict[str, Any], predictions_data: List[Dict]) -> Optional[TaskResult]:
task_type = task_data.get("type", "")
task_name = task_data.get("task", "")
pred_map = {pred["id"]: pred for pred in predictions_data}
predictions = []
references = []
for data_item in task_data["data"]:
item_id = data_item["id"]
if item_id not in pred_map:
continue
pred_item = pred_map[item_id]
if "prediction" in pred_item:
pred = pred_item["prediction"]
elif "prediction_final" in pred_item:
pred = pred_item["prediction_final"]
else:
continue
ref = self._extract_reference(data_item, task_type)
if ref is None:
continue
predictions.append(pred)
references.append(ref)
if not predictions:
return None
score, metric = self._calculate_metrics(predictions, references, task_type)
metric = self._convert_metric(metric)
return TaskResult(
task_name=task_name,
metric=metric,
score=score,
task_type=TaskType.COMPREHENSION
)
def _extract_reference(self, data_item: Dict[str, Any], task_type: str) -> Any:
output = data_item.get("output", {})
if task_type == "MultipleChoiceQA":
return output.get("answer")
elif task_type == "OpenQA":
return output.get("answer")
elif task_type == "Summarization":
return output.get("summary") or output.get("highlights")
elif task_type == "Translation":
if isinstance(output, str):
return output
else:
return output.get("translation")
elif task_type == "Story Generation":
return output.get("story")
elif task_type == "Dialogue":
return output.get("reference")
elif task_type == "Code Generation":
return output.get("response", {}).get("content")
elif task_type == "Code Repair":
return output.get("repairCode")
elif task_type == "Code Defect Detection":
return str(output.get("target"))
elif task_type == "Text to SQL":
return output.get("sql")
elif task_type == "Code Explanation":
return output.get("nl")
elif task_type == "Proof":
proof_data = output.get("proof", {})
steps = proof_data.get("steps", [])
conclusion = proof_data.get("conclusion", "")
return "\n".join(steps) + f"\nConclusion: {conclusion}"
elif task_type == "Mathematical Word Problem Solving":
return output.get("solution", {}).get("final_answer")
elif task_type == "Paraphrase Generation":
return output.get("paraphraseSentence")
elif task_type == "Grammar Correction":
return output.get("Standard English")
elif task_type == "Text Style Transfer":
return output.get("answer")
elif task_type == "Table-to-Text Generation":
return output.get("response", {}).get("text")
elif task_type == "Time Series":
return output.get("target")
elif task_type in ["classification", "multiple choice"]:
return list(output.values())[0].lower() if output else ""
elif task_type in ["multi label classification", "ner", "extraction", "relation extraction", "event detection", "parsing"]:
value = list(output.values())[0] if output else ""
return '<p>'.join(value.lower().split(', ')) if isinstance(value, str) else ""
else:
# 默认取第一个值
return list(output.values())[0] if output else ""
def _calculate_metrics(self, predictions: List, references: List, task_type: str) -> tuple:
if task_type == "MultipleChoiceQA":
score = self._exact_match_accuracy(predictions, references)
return score, "accuracy"
elif task_type == "OpenQA":
f1_score = self._calculate_f1(predictions, references)
return f1_score, "f1"
elif task_type == "Summarization":
rouge_scores = self._rouge_evaluation(predictions, references)
return rouge_scores["rouge1"], "rouge1"
elif task_type == "Translation":
rouge_scores = self._rouge_evaluation(predictions, references)
return rouge_scores["rouge1"], "rouge1"
elif task_type in ["Story Generation", "Dialogue", "Paraphrase Generation", "Grammar Correction", "Text Style Transfer", "Table-to-Text Generation"]:
bleu_scores = self._bleu_evaluation(predictions, references)
return bleu_scores["bleu1"], "bleu1"
elif task_type in ["Code Generation", "Code Repair"]:
try:
result = calc_codebleu(references, predictions, lang="python", weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None)
return result["codebleu"], "code_bleu"
except:
return 0.0, "code_bleu"
elif task_type == "Code Defect Detection":
score = self._exact_match_accuracy(predictions, references)
return score, "accuracy"
elif task_type == "Text to SQL":
score = self._exact_match_accuracy(predictions, references)
return score, "accuracy"
elif task_type in ["Code Explanation", "Proof"]:
bleu_scores = self._bleu_evaluation(predictions, references)
return bleu_scores["bleu1"], "bleu1"
elif task_type == "Mathematical Word Problem Solving":
score = self._exact_match_accuracy(predictions, references)
return score, "accuracy"
elif task_type == "Time Series":
mae = self._mean_absolute_error(predictions, references)
return mae, "MAE"
elif task_type in ["classification", "multiple choice"]:
f1_score = self._calculate_micro_f1(predictions, references)
return f1_score, "micro_f1"
elif task_type in ["multi label classification", "ner", "extraction", "relation extraction", "event detection", "parsing"]:
f1_score = self._calculate_micro_f1(predictions, references)
return f1_score, "micro_f1"
else:
f1_score = self._calculate_f1(predictions, references)
return f1_score, "f1"
def _exact_match_accuracy(self, predictions: List[str], references: List[str]) -> float:
correct = 0
for pred, ref in zip(predictions, references):
if isinstance(ref, str):
ref = [ref]
is_match = False
for r in ref:
if str(pred).strip() == str(r).strip():
is_match = True
break
if is_match:
correct += 1
return correct / len(predictions) if predictions else 0.0
def _calculate_f1(self, predictions: List[str], references: List[str]) -> float:
def compute_f1(pred: str, ref: str) -> float:
pred_tokens = str(pred).strip().split()
ref_tokens = str(ref).strip().split()
common_tokens = set(pred_tokens) & set(ref_tokens)
num_common = len(common_tokens)
if num_common == 0:
return 0.0
precision = num_common / len(pred_tokens) if pred_tokens else 0.0
recall = num_common / len(ref_tokens) if ref_tokens else 0.0
return 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
total_f1 = 0.0
for pred, ref in zip(predictions, references):
if isinstance(ref, str):
ref = [ref]
max_f1 = 0.0
for r in ref:
max_f1 = max(compute_f1(pred, r), max_f1)
total_f1 += max_f1
return total_f1 / len(predictions) if predictions else 0.0
def _calculate_micro_f1(self, predictions: List[str], references: List[str]) -> float:
total_tp = 0
total_fp = 0
total_fn = 0
for pred, ref in zip(predictions, references):
pred_tokens = set(str(pred).strip().split('<p>'))
ref_tokens = set(str(ref).strip().split("<p>"))
tp = len(pred_tokens & ref_tokens)
fp = len(pred_tokens - ref_tokens)
fn = len(ref_tokens - pred_tokens)
total_tp += tp
total_fp += fp
total_fn += fn
if total_tp == 0:
return 0.0
precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) > 0 else 0.0
recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) > 0 else 0.0
return 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
def _rouge_evaluation(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge1_scores, rouge2_scores, rougel_scores = [], [], []
for pred, ref in zip(predictions, references):
if isinstance(ref, str):
ref = [ref]
rouge1, rouge2, rougeL = 0, 0, 0
for r in ref:
scores = scorer.score(str(r), str(pred))
rouge1 = max(scores['rouge1'].fmeasure, rouge1)
rouge2 = max(scores['rouge2'].fmeasure, rouge2)
rougeL = max(scores['rougeL'].fmeasure, rougeL)
rouge1_scores.append(rouge1)
rouge2_scores.append(rouge2)
rougel_scores.append(rougeL)
return {
'rouge1': sum(rouge1_scores) / len(rouge1_scores) if rouge1_scores else 0.0,
'rouge2': sum(rouge2_scores) / len(rouge2_scores) if rouge2_scores else 0.0,
'rougeL': sum(rougel_scores) / len(rougel_scores) if rougel_scores else 0.0,
}
def _bleu_evaluation(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
smoothie = SmoothingFunction().method4
bleu1_scores, bleu2_scores, bleu3_scores, bleu4_scores = [], [], [], []
for pred, ref in zip(predictions, references):
try:
hypothesis = nltk.word_tokenize(str(pred))
except:
hypothesis = str(pred).split()
if isinstance(ref, str):
ref = [ref]
bleu1, bleu2, bleu3, bleu4 = 0, 0, 0, 0
for r in ref:
try:
reference = [nltk.word_tokenize(str(r))]
except:
reference = [str(r).split()]
try:
bleu1 = max(sentence_bleu(reference, hypothesis, weights=(1, 0, 0, 0), smoothing_function=smoothie), bleu1)
bleu2 = max(sentence_bleu(reference, hypothesis, weights=(0.5, 0.5, 0, 0), smoothing_function=smoothie), bleu2)
bleu3 = max(sentence_bleu(reference, hypothesis, weights=(1/3, 1/3, 1/3, 0), smoothing_function=smoothie), bleu3)
bleu4 = max(sentence_bleu(reference, hypothesis, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smoothie), bleu4)
except:
continue
bleu1_scores.append(bleu1)
bleu2_scores.append(bleu2)
bleu3_scores.append(bleu3)
bleu4_scores.append(bleu4)
return {
'bleu1': sum(bleu1_scores) / len(bleu1_scores) if bleu1_scores else 0.0,
'bleu2': sum(bleu2_scores) / len(bleu2_scores) if bleu2_scores else 0.0,
'bleu3': sum(bleu3_scores) / len(bleu3_scores) if bleu3_scores else 0.0,
'bleu4': sum(bleu4_scores) / len(bleu4_scores) if bleu4_scores else 0.0,
}
def _mean_absolute_error(self, predictions: List[float], references: List[float]) -> float:
if not predictions:
return 0.0
error_sum = 0.0
valid_count = 0
for p, r in zip(predictions, references):
try:
error_sum += abs(float(p) - float(r))
valid_count += 1
except:
continue
return error_sum / valid_count if valid_count > 0 else 0.0
def _convert_metric(self, metric: str) -> str:
m = metric.lower()
if m == "accuracy":
return "ACC"
if m == "f1":
return "F1"
if m == "micro_f1":
return "Micro-F1"
if m.startswith("rouge"):
if "l" in m:
return "ROUGE-L"
else:
return "ROUGE-1"
if m.startswith("bleu"):
return "BLEU-1"
if m == "code_bleu":
return "CodeBLEU"
return metric.upper()