|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0282 |
|
- Rouge1: 17.629 |
|
- Rouge2: 8.5256 |
|
- Rougel: 17.1329 |
|
- Rougelsum: 17.1403 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 6.6665 | 1.0 | 1209 | 3.2917 | 13.9446 | 5.4878 | 13.3696 | 13.3884 | |
|
| 3.9091 | 2.0 | 2418 | 3.1575 | 16.5515 | 8.4045 | 15.734 | 15.8858 | |
|
| 3.5987 | 3.0 | 3627 | 3.0803 | 18.4586 | 10.0134 | 17.6448 | 17.8592 | |
|
| 3.4269 | 4.0 | 4836 | 3.0492 | 17.9493 | 8.9283 | 17.0803 | 17.1683 | |
|
| 3.3213 | 5.0 | 6045 | 3.0466 | 18.124 | 8.967 | 17.4472 | 17.4445 | |
|
| 3.2368 | 6.0 | 7254 | 3.0405 | 17.5527 | 8.4814 | 16.9722 | 17.0104 | |
|
| 3.2039 | 7.0 | 8463 | 3.0335 | 17.5116 | 8.2969 | 17.006 | 17.0084 | |
|
| 3.1834 | 8.0 | 9672 | 3.0282 | 17.629 | 8.5256 | 17.1329 | 17.1403 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|