|
--- |
|
base_model: google/pegasus-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: LLM_Teached_Pegasus |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LLM_Teached_Pegasus |
|
|
|
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6606 |
|
- Rouge1: 0.4557 |
|
- Rouge2: 0.2019 |
|
- Rougel: 0.3603 |
|
- Rougelsum: 0.3597 |
|
- Gen Len: 30.8509 |
|
- Precision: 0.9078 |
|
- Recall: 0.9053 |
|
- F1: 0.9064 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| |
|
| 2.0887 | 1.0 | 625 | 1.7362 | 0.4326 | 0.1871 | 0.3375 | 0.3373 | 31.2482 | 0.9035 | 0.9015 | 0.9023 | |
|
| 1.8362 | 2.0 | 1250 | 1.6844 | 0.4466 | 0.1942 | 0.3511 | 0.3507 | 30.3036 | 0.9071 | 0.9032 | 0.905 | |
|
| 1.7784 | 3.0 | 1875 | 1.6666 | 0.451 | 0.1992 | 0.3554 | 0.3551 | 30.7991 | 0.907 | 0.9045 | 0.9056 | |
|
| 1.7261 | 4.0 | 2500 | 1.6606 | 0.4557 | 0.2019 | 0.3603 | 0.3597 | 30.8509 | 0.9078 | 0.9053 | 0.9064 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.15.0 |
|
|