File size: 6,867 Bytes
a21dc9e c2d6420 a21dc9e c2d6420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: mit
base_model: intfloat/multilingual-e5-base
datasets:
- E-FAQ
language:
- pt
- es
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@10
- cosine_recall@1
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@1
- cosine_map@10
- dot_accuracy@1
- dot_accuracy@10
- dot_precision@1
- dot_precision@10
- dot_recall@1
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@1
- dot_map@10
- euclidean_accuracy@1
- euclidean_accuracy@10
- euclidean_precision@1
- euclidean_precision@10
- euclidean_recall@1
- euclidean_recall@10
- euclidean_ndcg@10
- euclidean_mrr@10
- euclidean_map@1
- euclidean_map@10
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:119448
- loss:CompositionLoss
widget:
- source_sentence: Tem mandril com outras medidas
sentences:
- Bom dia vem tudo no kit conforme a foto?maquina de solda ,esquadro,máscara, 2
rolos de arame é isso?
- Você tem da magneti Marelli código 40421702 PARATI BOLA G2 96 MONOPONTO AP 1.6
GASOLINA
- 'Hola buenas. Es compatible para NEW Mitsubishi Montero cr 4x4 3.2 N. Chasis:
JMBMNV88W8J000791'
- source_sentence: Hola tienes disponible de mono talla 12 a 18 meses?
sentences:
- Hola buen dia! Necesito una malla sombra como la de esta publicación pero de 4
x 3.40 mts, en cuanto sale?
- Serve na Duster automática 2.0
- Lo que pasa es que no me deja agregar más de 1
- source_sentence: Viene con kit de instalacion y tornillería?
sentences:
- Bom dia. Tem como fixar no chão. Na grama?
- La base para conectar ese foco la tendrá???
- Pod ser usado para instalação de farol d milha ?
- source_sentence: corsa 2004 1.8 con ultimos 8 digitos NIV 4C210262
sentences:
- Le queda a un Derby 2007 1.8?
- Serve no Corsa clacic 97 sedã
- Boa tarde vc so tem.um ?
- source_sentence: Buenos días, es compatible con las apps bancarias?
sentences:
- Hola....el bulon de q diámetro es?
- Se le puede quitar el microfono?
- Serve para cachorrinha que está no cio?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: E-FAQ
type: text-retrieval
metrics:
- type: cosine_accuracy@1
value: 0.7941531042796866
name: Cosine Accuracy@1
- type: cosine_accuracy@10
value: 0.9483875828812538
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7941531042796866
name: Cosine Precision@1
- type: cosine_precision@10
value: 0.17701928872814954
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5563725301557428
name: Cosine Recall@1
- type: cosine_recall@10
value: 0.9093050609545924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8420320427198602
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8476323229713864
name: Cosine Mrr@10
- type: cosine_map@1
value: 0.7941531042796866
name: Cosine Map@1
- type: cosine_map@10
value: 0.8004156235676744
name: Cosine Map@10
- type: dot_accuracy@1
value: 0.7941531042796866
name: Dot Accuracy@1
- type: dot_accuracy@10
value: 0.9483875828812538
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.7941531042796866
name: Dot Precision@1
- type: dot_precision@10
value: 0.17701928872814954
name: Dot Precision@10
- type: dot_recall@1
value: 0.5563725301557428
name: Dot Recall@1
- type: dot_recall@10
value: 0.9093050609545924
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8420320427198602
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8476323229713864
name: Dot Mrr@10
- type: dot_map@1
value: 0.7941531042796866
name: Dot Map@1
- type: dot_map@10
value: 0.8004156235676744
name: Dot Map@10
- type: euclidean_accuracy@1
value: 0.7941531042796866
name: Euclidean Accuracy@1
- type: euclidean_accuracy@10
value: 0.9483875828812538
name: Euclidean Accuracy@10
- type: euclidean_precision@1
value: 0.7941531042796866
name: Euclidean Precision@1
- type: euclidean_precision@10
value: 0.17701928872814954
name: Euclidean Precision@10
- type: euclidean_recall@1
value: 0.5563725301557428
name: Euclidean Recall@1
- type: euclidean_recall@10
value: 0.9093050609545924
name: Euclidean Recall@10
- type: euclidean_ndcg@10
value: 0.8420320427198602
name: Euclidean Ndcg@10
- type: euclidean_mrr@10
value: 0.8476323229713864
name: Euclidean Mrr@10
- type: euclidean_map@1
value: 0.7941531042796866
name: Euclidean Map@1
- type: euclidean_map@10
value: 0.8004156235676744
name: Euclidean Map@10
---
# Multilingual E5 Base Self-Distilled on E-FAQ
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
### Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
|