Gokulapriyan's picture
update model card README.md
119638e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-tiny-patch16-224-finetuned-main-gpu-20e-final
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9856292517006803

deit-tiny-patch16-224-finetuned-main-gpu-20e-final

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0420
  • Accuracy: 0.9856

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6047 1.0 551 0.6283 0.7111
0.431 2.0 1102 0.3962 0.8366
0.352 3.0 1653 0.2620 0.8953
0.2682 4.0 2204 0.1814 0.9318
0.2533 5.0 2755 0.1564 0.9396
0.2069 6.0 3306 0.1243 0.9531
0.2065 7.0 3857 0.1048 0.9603
0.194 8.0 4408 0.1019 0.9636
0.1879 9.0 4959 0.0877 0.9671
0.1584 10.0 5510 0.0870 0.9687
0.1426 11.0 6061 0.0814 0.9718
0.1596 12.0 6612 0.0740 0.9749
0.1125 13.0 7163 0.0613 0.9781
0.1374 14.0 7714 0.0570 0.9787
0.1003 15.0 8265 0.0596 0.9793
0.109 16.0 8816 0.0511 0.9815
0.1206 17.0 9367 0.0497 0.9829
0.1024 18.0 9918 0.0437 0.9844
0.1051 19.0 10469 0.0420 0.9851
0.0955 20.0 11020 0.0420 0.9856

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2