metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: "ATED UIA IY OO ATE\nALVA YS TAL AIR,\n\nener oS. : Set eran one\n[fhe 1ST AD CATT\n\nZee cae FF +47 wer: 2.3 te eet wae\nasst : ie ix ® we! {rags\nSeShee Biss Mae 76 ths) a0 art SeRlee pt? Seas\n\nwe Gh caste: Geass seen Ev cy, te 2 ees ergr eo. pe Ueesnee earn guest #2. ps\nui AS, SER REG REM Re S As ee ST es: TTR\n\n \n\nos 4 i <i 28 = peed rd\nwis a, O8.2 Fi 44, we weg Peis BQ Tos Ve Ae ee\n¢ ” z ss\nG2 ly whi ls = ‘ « te\n\n \n\n \n\n \n\nos (sz “ he i z : ‘a att =\ndey ax % Ms z. SoLeY She « «8 wis ‘ Ls\n. Sc oot - a - az : ide\n. ‘ « - o. > a\" .\n7 ee we be a es t~ + we pa bs 4 Sage sh 2\n‘ 2 Fos =a ; ; <\nS| yeu c2a: fe 2 Beye Sy nee one ‘\nns - y A : ™ : ‘ -\nEF < af Gulte ey wat a .\n. et “ 7 4 4%\nos ma ‘os $ ~ Sa me *t i-we *\ncyvey oe / oa it i ' * s : as a. A , ite\nAS “heed oo = Dox eee. a at 02 my, * at eis “ekoee \"33 “x MS ihe ae as Sos\nrit ‘i “ +5 ‘ 4 oy\nos = eve 4. oa OB ak\né % 24 z= ‘ -\n= yey i = ross e , 3 :\n~ = ‘ 4\n2 oe . ‘ wae\ntas t oat i * -\n‘ avi 23 :\nboys Be ; > SH\nCet Anke seats\nbe ‘ ot ee ; .\n»\n“J\n. :\nat\n7\nr ;\n\n \n\ni 7\n\n—A\n\nRTE 1H: -\n\nwie iit\nSia &\n\nfat\nat\ndi\nWy!\ni\n:\n\n>\na hl a pore yee me wenn nn emmnn\n\n2AM Re\n\n“wf,\n\n \n\natak\na. wen\n\n¢\n\nz\nEE OEE EE EE ER we eH TO Oe\n\n=\nsd\n\n.\n\n«\n\n(\n-\nSines Bess pitebia suassorsegteicd.\n\naye\n=r\n\f"
- text: " \n \n\nSLNO EQUIPMENT NAM ‘UNIT | EQPTCODE | ‘&SLNO | LOCATION\n\n \n \n\n \n\n \n \n \n\n \n\n \n \n \n\n \n\n \n\n \n\n \n \n\n \n\n \n\n \n\n \n \n \n \n\n \n\n \n \n \n\n \n\n \n\n \n \n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n[ee CHP#1&2 | 1- sao i cHPreN 01 | Pc ILMS FUROR = TON UECAMIL/FHP/22/1 cna\nRCC AEC TRI puppies | 2 ad PCH- 2 Net ean? al CRUSHER ens | wecnmuremmne | 17-0020\n\neo MONnOST crema | 1-HOIST-7.5T-PCH- = Ree nooronenes | 7 UEC/HIL/FHP/22/3 \"17-01-2022 16-01-2023\n| MONO Cup#182 | 1-HOIST-6T-SCH > ee ‘| Si ecoNDaRy | 6.0 TON | UEC/HIL/FHP/22/4 | 17-01-2022 | 16-01-2023\n\n| Wowonat aca cHP#1a2 | 1-HOIST10T-SCH |\" y ae 5 | crue aOR 10 TON UEC/HIL/FHP/22/5 | 17-01-2022 | 16-01-2023\n| a | MONNOST CHP#3 , 3-SCH-HOIST-7.5T-A | ID ‘snort ooh ance . * TON | UEC/HIL/FHP/22/7 17-01-2022 16-01-2023 |\n| 8 | See om |e -SCH-HOIST-7.5T-A | = Cot oe wdc, Oia Bes a | TS TON | UEC/HIL/FHP/22/8 17-01-2022 16-01-2023\n~~ | MONORAIL ELECTRIC TIDNO:CHP/EMH-07 | SCH, CRUSHER 012022 | cananis\n\n \n \n \n \n \n \n \n \n \n \n\nFLOOR, OVER SCAB | 5.0 TON UEC/HIL/FHP/22/9\n\nSCH, CV402A/B\n\n \n\n \n\n \n\n \n \n \n \n\nL 9 | HOIST CHP#4 -SCH-HOIST-5.0T-B | S|. No: H-971/ 971A\n| | MONORAIL ELECTRIC 4s To ID NO: CHP/EMH-07\n\n \n\n \n \n \n \n \n \n\n \n\nHOIST\n\n10 ee CHP#4 | 4-SCH-HOIST-20T-B gy Ng: H-970 se eran “20 2.0TON | UEC/HIL/FHP/22/10 | 17-01-2022 | 16-01-2023\na See oO a ipODCVA0SAE | _ —-—\n02,\n| 14 | MONORAILELECTRIC | Cupieg | 4-tp2-Hoist-20T DNO-* ee HEAD PULLEY | 20TON | UEC/HIL/FHP/22/11 | 17-01-2022 16-01-2023\n\nL HOIST-2.0T FLOOR\n\nTUNNEL,OVER SUMP\nCHAIN PULLEY BLOCK | CHP #1 NA | aera 1 TON\n| aa T Vv\nCHAIN PULLEY BLOCK | CHP #1 ee Fa\n\n14 CHAIN PULLEY BLOCK | CHP #1 | 10415 i ‘ = 1 TON\n\n- L 7 ; i oe & VFA _\n\n14-01-2023\n\nUEC/HIL/FHP/22/12 | 15-01-2022\n\nUEC/HIL/FHP/22/13 | 15-01-2022\n\n \n \n\n14-01-2023\n\n \n\n|\nUEC/HIL/FHP/22/14 | 15-01-2022 | 14-01-2023\n\n \n\n \n \n\n \n\n \n\f"
- text: " \n\nTOTAL\n11\n\n- wl et\n\nSUPERVI\nSOR\n\n7 ce\n\n \n\nnly\nAIN|A ale\nSale\nlale ld\nSo\n\n \n\n \n\n:\n\n9 wij im\n\n \n\n \n\n \n\naes 3513\nsIB|e\nalg\nalg\n\nNTN\n\na 2 3 ; 3\ngle\n\no\n\nri\n\n \n \n\n \n\n \n\f"
- text: " \n\nBasic Value Ne arte me °\n\ngee 339980\" i\n\nO |- 4 Jo} ©: :\nRot oct DW. 159.)\n\nBS! < gum v= [AAPG\nPF - estat OE Boy S*\nWISC. DED__ssssssnens\n\nlet Payable 3 ¢) TS a\n\ntees ee\n\n \n\f"
- text: "Deepak Singh\n\nFrom: Swapnil Dixit <[email protected]>\n\nSent: 18 August 2021 16:48\n\nTo: Deepak Singh\n\nCe: Shree Nath Mishra; Pranjal Pathak; Prashant Shripad Nagraj; Kirtiraj Jilkar; Pranjal\nPathak; Arun Kumar Singh; Ravi Kumar; Nishant Shah; Vidyanath Jha\n\nSubject: RE: Agenda for next AOH review.\n\n \n\n \n \n\nCAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize\nthe sender and know the content is safe.\n\n \n\nDear Deepak Ji,\n\n“we thankfully acknowledge the receipt of your trailing mail and would like to confirm our acceptance of 4016- &\n322-man days for a period ( Jun to Dec 20 ) and ( Jan to April 21 ) respectively.\n\nRequest to proceed further in the matter and arrange to release the order at the earliest.\nRegards\n\nSwapnil Dixit\n\nFrom: Deepak Singh <[email protected]>\nSent: 18 August 2021 12:45\nTo: Swapnil Dixit <[email protected]>\nCc: shree.mishra <[email protected]>; pranjal.pathak <[email protected]>; Prashant\nShripad Nagraj <[email protected]>; Kirtiraj Jilkar <[email protected]>;\npranjal.pathak <[email protected]>; arun.s <[email protected]>; Ravi Kumar\n\nw= <[email protected]>; Nishant Shah <[email protected]>; Vidyanath Jha\n<[email protected]>\nSubject: RE: Agenda for next AOH review.\n\nCAUTION: This email originated from outside the organisation. Do not click on any links or attachments\n_ unless you recognise the sender and know the content is safe. Forward suspicious mails to Information\n— Security Team.\n\nSwapnil ji;\nKeeping the discussion, we had in the meeting on 09-08-2021,our Team discussed later and following is the point-\n\n1. As per our procedure , we don’t count the day of Antigen Test as a part of Quarantine ,but at the same time\n| agree that Gate Pass processing was taking time beyond 02 days.\n“ So as a special case , for the period Jun 20 to Dec 20 ,we are considering your request of counting the\nAntigen Test day as a part of Quarantine .Hence total Quarantine Days for that period will be 4016 mandays.\n2. For the period Jan 21 to Apr 21,we have streamlined our Gate Pass Process and delivered the Gate Pass in\n02 days .So for the same period ,we are not considering the day of Antigen test as a part of Quarantine .\nVerified Man-days along with Mr. Gaurav of M/S Thermax is 322 Mandays.File is attached.\n\nKindly acknowledge so we proceed further .\n\nRegards\nDeepak\n\f"
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9976525821596244
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
2 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9977 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/SERVICE_LARGE_MODEL_ZEON")
# Run inference
preds = model("
TOTAL
11
- wl et
SUPERVI
SOR
7 ce
nly
AIN|A ale
Sale
lale ld
So
:
9 wij im
aes 3513
sIB|e
alg
alg
NTN
a 2 3 ; 3
gle
o
ri
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 225.8451 | 1106 |
Label | Training Sample Count |
---|---|
0 | 267 |
1 | 74 |
2 | 85 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3001 | - |
0.0164 | 50 | 0.2586 | - |
0.0328 | 100 | 0.1809 | - |
0.0492 | 150 | 0.0534 | - |
0.0656 | 200 | 0.0285 | - |
0.0820 | 250 | 0.0144 | - |
0.0985 | 300 | 0.0045 | - |
0.1149 | 350 | 0.0281 | - |
0.1313 | 400 | 0.0432 | - |
0.1477 | 450 | 0.0045 | - |
0.1641 | 500 | 0.0023 | - |
0.1805 | 550 | 0.0022 | - |
0.1969 | 600 | 0.0011 | - |
0.2133 | 650 | 0.0008 | - |
0.2297 | 700 | 0.0226 | - |
0.2461 | 750 | 0.0009 | - |
0.2626 | 800 | 0.0008 | - |
0.2790 | 850 | 0.001 | - |
0.2954 | 900 | 0.001 | - |
0.3118 | 950 | 0.001 | - |
0.3282 | 1000 | 0.0007 | - |
0.3446 | 1050 | 0.0012 | - |
0.3610 | 1100 | 0.0008 | - |
0.3774 | 1150 | 0.0008 | - |
0.3938 | 1200 | 0.0008 | - |
0.4102 | 1250 | 0.0034 | - |
0.4266 | 1300 | 0.0007 | - |
0.4431 | 1350 | 0.0007 | - |
0.4595 | 1400 | 0.0008 | - |
0.4759 | 1450 | 0.0007 | - |
0.4923 | 1500 | 0.0004 | - |
0.5087 | 1550 | 0.0005 | - |
0.5251 | 1600 | 0.0007 | - |
0.5415 | 1650 | 0.0005 | - |
0.5579 | 1700 | 0.0005 | - |
0.5743 | 1750 | 0.0004 | - |
0.5907 | 1800 | 0.0009 | - |
0.6072 | 1850 | 0.0025 | - |
0.6236 | 1900 | 0.0003 | - |
0.6400 | 1950 | 0.0023 | - |
0.6564 | 2000 | 0.0004 | - |
0.6728 | 2050 | 0.0045 | - |
0.6892 | 2100 | 0.0005 | - |
0.7056 | 2150 | 0.0109 | - |
0.7220 | 2200 | 0.0003 | - |
0.7384 | 2250 | 0.0021 | - |
0.7548 | 2300 | 0.0005 | - |
0.7713 | 2350 | 0.0004 | - |
0.7877 | 2400 | 0.0118 | - |
0.8041 | 2450 | 0.0003 | - |
0.8205 | 2500 | 0.0003 | - |
0.8369 | 2550 | 0.0126 | - |
0.8533 | 2600 | 0.0004 | - |
0.8697 | 2650 | 0.0162 | - |
0.8861 | 2700 | 0.0003 | - |
0.9025 | 2750 | 0.0004 | - |
0.9189 | 2800 | 0.0005 | - |
0.9353 | 2850 | 0.0004 | - |
0.9518 | 2900 | 0.0032 | - |
0.9682 | 2950 | 0.0003 | - |
0.9846 | 3000 | 0.0004 | - |
1.0010 | 3050 | 0.0003 | - |
1.0174 | 3100 | 0.0003 | - |
1.0338 | 3150 | 0.0019 | - |
1.0502 | 3200 | 0.0194 | - |
1.0666 | 3250 | 0.0003 | - |
1.0830 | 3300 | 0.0004 | - |
1.0994 | 3350 | 0.01 | - |
1.1159 | 3400 | 0.0002 | - |
1.1323 | 3450 | 0.0003 | - |
1.1487 | 3500 | 0.0004 | - |
1.1651 | 3550 | 0.0004 | - |
1.1815 | 3600 | 0.0002 | - |
1.1979 | 3650 | 0.0005 | - |
1.2143 | 3700 | 0.0002 | - |
1.2307 | 3750 | 0.0019 | - |
1.2471 | 3800 | 0.0003 | - |
1.2635 | 3850 | 0.0048 | - |
1.2799 | 3900 | 0.013 | - |
1.2964 | 3950 | 0.0031 | - |
1.3128 | 4000 | 0.0002 | - |
1.3292 | 4050 | 0.0024 | - |
1.3456 | 4100 | 0.0002 | - |
1.3620 | 4150 | 0.0003 | - |
1.3784 | 4200 | 0.0003 | - |
1.3948 | 4250 | 0.0002 | - |
1.4112 | 4300 | 0.003 | - |
1.4276 | 4350 | 0.0002 | - |
1.4440 | 4400 | 0.0002 | - |
1.4605 | 4450 | 0.0022 | - |
1.4769 | 4500 | 0.0002 | - |
1.4933 | 4550 | 0.0078 | - |
1.5097 | 4600 | 0.0027 | - |
1.5261 | 4650 | 0.0002 | - |
1.5425 | 4700 | 0.0002 | - |
1.5589 | 4750 | 0.0002 | - |
1.5753 | 4800 | 0.0002 | - |
1.5917 | 4850 | 0.0002 | - |
1.6081 | 4900 | 0.0118 | - |
1.6245 | 4950 | 0.0002 | - |
1.6410 | 5000 | 0.0002 | - |
1.6574 | 5050 | 0.0003 | - |
1.6738 | 5100 | 0.0003 | - |
1.6902 | 5150 | 0.0068 | - |
1.7066 | 5200 | 0.0003 | - |
1.7230 | 5250 | 0.0112 | - |
1.7394 | 5300 | 0.0002 | - |
1.7558 | 5350 | 0.0002 | - |
1.7722 | 5400 | 0.0003 | - |
1.7886 | 5450 | 0.0002 | - |
1.8051 | 5500 | 0.0002 | - |
1.8215 | 5550 | 0.0002 | - |
1.8379 | 5600 | 0.0002 | - |
1.8543 | 5650 | 0.0003 | - |
1.8707 | 5700 | 0.0047 | - |
1.8871 | 5750 | 0.0121 | - |
1.9035 | 5800 | 0.0003 | - |
1.9199 | 5850 | 0.013 | - |
1.9363 | 5900 | 0.005 | - |
1.9527 | 5950 | 0.0001 | - |
1.9691 | 6000 | 0.0002 | - |
1.9856 | 6050 | 0.0003 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}