Bu model "https://github.com/stefan-it/turkish-bert" base alınarak geliştirilmiş bir NER(Varlık ismi tanıma) modelidir.

Eğitim ve validasyon verisi

Fine-tune işlemi için TDD-NER-202112-CC-002 veri seti kullanılmıştır.

@inproceedings{pan-etal-2017-cross, title = "Cross-lingual Name Tagging and Linking for 282 Languages", author = "Pan, Xiaoman and Zhang, Boliang and May, Jonathan and Nothman, Joel and Knight, Kevin and Ji, Heng", booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2017", address = "Vancouver, Canada", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P17-1178", doi = "10.18653/v1/P17-1178", pages = "1946--1958" }

Hiperparametreler

custom_labels = ["O","B-LOC","I-LOC","B-ORG","I-ORG","B-PER","I-PER"]

model_args = { "train_batch_size": 32, "eval_batch_size": 32, "num_train_epochs": 3, "seed":1, "save_steps": 625, "overwrite_output_dir": True, "output_dir": "/content/Model" }

Eğitim Metrikleri

Epochs Running Loss
1 0.1152
2 0.1091
3 0.0586

Nasıl Kullanılacağı

# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("token-classification", model="Gorengoz/bert-based-Turkish-NER-wikiann")
pipe("Entity X'in müşteri hizmetleri hızlı ve etkili, Entity Y'nin ürün kalitesi çok kötü.",aggregation_strategy = "simple"")
Downloads last month
5
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Gorengoz/bert-based-Turkish-NER-wikiann 1