bert-base-multilingual-uncased-finetuned-ner-geocorpus

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1137
  • Precision: 0.8040
  • Recall: 0.7863
  • F1: 0.7951
  • Accuracy: 0.9678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 276 0.1781 0.6711 0.6469 0.6588 0.9541
0.2543 2.0 552 0.1287 0.7567 0.7875 0.7718 0.9638
0.2543 3.0 828 0.1137 0.8040 0.7863 0.7951 0.9678
0.0868 4.0 1104 0.1205 0.7628 0.8630 0.8098 0.9674
0.0868 5.0 1380 0.1184 0.8093 0.8722 0.8396 0.9722
0.0448 6.0 1656 0.1148 0.7817 0.8943 0.8342 0.9723

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for GuiTap/bert-base-multilingual-uncased-finetuned-ner-geocorpus

Finetuned
(1764)
this model