bert-large-cased-finetuned-ner-geocorpus

This model is a fine-tuned version of google-bert/bert-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1330
  • Precision: 0.868
  • Recall: 0.8872
  • F1: 0.8775
  • Accuracy: 0.9793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9991 275 0.1429 0.7212 0.7318 0.7265 0.9613
0.21 1.9982 550 0.1111 0.7211 0.8267 0.7703 0.9654
0.21 2.9973 825 0.0979 0.8168 0.8168 0.8168 0.9725
0.0651 4.0 1101 0.1088 0.7574 0.9011 0.8230 0.9678
0.0651 4.9991 1376 0.1033 0.825 0.8904 0.8565 0.9744
0.0305 5.9982 1651 0.1132 0.8908 0.8536 0.8718 0.9785
0.0305 6.9973 1926 0.1127 0.8591 0.8823 0.8705 0.9786
0.0153 8.0 2202 0.1155 0.8687 0.8814 0.8750 0.9795
0.0153 8.9991 2477 0.1280 0.8860 0.8774 0.8817 0.9804
0.0089 9.9909 2750 0.1330 0.868 0.8872 0.8775 0.9793

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
17
Safetensors
Model size
333M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuiTap/bert-large-cased-finetuned-ner-geocorpus

Finetuned
(115)
this model