GuiTap's picture
End of training
9fb0bdf verified
metadata
license: apache-2.0
base_model: google-bert/bert-large-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-large-cased-finetuned-ner-harem
    results: []

bert-large-cased-finetuned-ner-harem

This model is a fine-tuned version of google-bert/bert-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2665
  • Precision: 0.7241
  • Recall: 0.7423
  • F1: 0.7331
  • Accuracy: 0.9611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9938 140 0.2609 0.5107 0.5626 0.5354 0.9324
No log 1.9947 281 0.2057 0.6370 0.6642 0.6503 0.9517
No log 2.9956 422 0.2106 0.6527 0.6642 0.6584 0.9566
0.2074 3.9965 563 0.2342 0.6843 0.7054 0.6947 0.9571
0.2074 4.9973 704 0.2369 0.7216 0.7290 0.7253 0.9614
0.2074 5.9982 845 0.2334 0.7013 0.7261 0.7135 0.9574
0.2074 6.9991 986 0.2580 0.7139 0.7570 0.7348 0.9592
0.0377 8.0 1127 0.2658 0.7452 0.7452 0.7452 0.9607
0.0377 8.9938 1267 0.2619 0.7543 0.7688 0.7615 0.9637
0.0377 9.9379 1400 0.2665 0.7241 0.7423 0.7331 0.9611

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1