|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
This is a Remake, refined and better version of the KingNish Reasoning model. |
|
|
|
```pip install peft |
|
|
|
pip install -U bitsandbytes |
|
|
|
pip install -U transformers |
|
``` |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM |
|
|
|
MAX_REASONING_TOKENS = 1024 |
|
MAX_RESPONSE_TOKENS = 512 |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Guilherme34/Reasoning-2.6", token="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") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Guilherme34/Reasoning-2.6") |
|
|
|
prompt = "hey, how are you?" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
# Generate reasoning |
|
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) |
|
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) |
|
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) |
|
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# print("REASONING: " + reasoning_output) |
|
|
|
# Generate answer |
|
messages.append({"role": "reasoning", "content": reasoning_output}) |
|
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) |
|
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) |
|
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
print("ANSWER: " + response_output) |
|
``` |