wav2vec2-1b-E30_freq

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4977
  • Cer: 13.7277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
13.4278 0.2580 200 4.0083 87.1123
2.1559 0.5160 400 1.8970 40.9833
1.3277 0.7741 600 1.2101 31.0620
1.162 1.0321 800 1.0824 26.5096
0.9949 1.2901 1000 0.9657 24.2246
0.9109 1.5481 1200 1.0152 24.8414
0.8943 1.8062 1400 0.8544 21.7869
0.7895 2.0642 1600 0.9202 22.9617
0.6679 2.3222 1800 0.9574 24.1835
0.6296 2.5802 2000 0.7541 19.2199
0.6245 2.8383 2200 0.7259 19.2728
0.5656 3.0963 2400 0.6447 17.3344
0.4821 3.3543 2600 0.6489 16.9878
0.4513 3.6123 2800 0.6556 17.5282
0.4285 3.8703 3000 0.6180 16.7234
0.374 4.1284 3200 0.5651 15.2314
0.3375 4.3864 3400 0.5135 13.8275
0.3158 4.6444 3600 0.4945 13.7688
0.2897 4.9024 3800 0.4977 13.7277

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
19
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-E30_freq

Finetuned
(90)
this model