File size: 2,644 Bytes
10e64d5
 
5195bc0
 
 
 
 
 
 
10e64d5
 
5195bc0
 
10e64d5
5195bc0
10e64d5
5195bc0
 
 
 
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
10e64d5
5195bc0
 
 
 
 
 
 
 
 
 
 
 
10e64d5
5195bc0
10e64d5
5195bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e64d5
 
5195bc0
10e64d5
5195bc0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-E30_freq
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-1b-E30_freq

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4977
- Cer: 13.7277

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 13.4278       | 0.2580 | 200  | 4.0083          | 87.1123 |
| 2.1559        | 0.5160 | 400  | 1.8970          | 40.9833 |
| 1.3277        | 0.7741 | 600  | 1.2101          | 31.0620 |
| 1.162         | 1.0321 | 800  | 1.0824          | 26.5096 |
| 0.9949        | 1.2901 | 1000 | 0.9657          | 24.2246 |
| 0.9109        | 1.5481 | 1200 | 1.0152          | 24.8414 |
| 0.8943        | 1.8062 | 1400 | 0.8544          | 21.7869 |
| 0.7895        | 2.0642 | 1600 | 0.9202          | 22.9617 |
| 0.6679        | 2.3222 | 1800 | 0.9574          | 24.1835 |
| 0.6296        | 2.5802 | 2000 | 0.7541          | 19.2199 |
| 0.6245        | 2.8383 | 2200 | 0.7259          | 19.2728 |
| 0.5656        | 3.0963 | 2400 | 0.6447          | 17.3344 |
| 0.4821        | 3.3543 | 2600 | 0.6489          | 16.9878 |
| 0.4513        | 3.6123 | 2800 | 0.6556          | 17.5282 |
| 0.4285        | 3.8703 | 3000 | 0.6180          | 16.7234 |
| 0.374         | 4.1284 | 3200 | 0.5651          | 15.2314 |
| 0.3375        | 4.3864 | 3400 | 0.5135          | 13.8275 |
| 0.3158        | 4.6444 | 3600 | 0.4945          | 13.7688 |
| 0.2897        | 4.9024 | 3800 | 0.4977          | 13.7277 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1