wav2vec2-1b-E50_freq

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4231
  • Cer: 11.7951

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
9.4581 0.2580 200 3.9157 68.4387
2.071 0.5160 400 1.6011 37.3766
1.307 0.7741 600 1.1918 28.6889
1.1363 1.0321 800 1.0170 23.9192
0.8977 1.2901 1000 0.8161 20.3771
0.8219 1.5481 1200 0.7277 18.9908
0.7857 1.8062 1400 0.7119 19.1494
0.6967 2.0642 1600 0.6717 17.8748
0.5744 2.3222 1800 0.7313 19.1259
0.5676 2.5802 2000 0.6092 16.3593
0.5362 2.8383 2200 0.5840 16.5120
0.4879 3.0963 2400 0.5039 13.8745
0.4144 3.3543 2600 0.5449 14.6558
0.3875 3.6123 2800 0.4790 13.3400
0.3723 3.8703 3000 0.4497 12.3238
0.3326 4.1284 3200 0.4624 12.3825
0.2905 4.3864 3400 0.4345 12.2004
0.2745 4.6444 3600 0.4479 12.2768
0.2668 4.9024 3800 0.4231 11.7951

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
21
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-E50_freq

Finetuned
(90)
this model