Gummybear05's picture
End of training
081c46d verified
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-Elderly4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-1b-Elderly4
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3586
- Cer: 9.6863
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 8.3662 | 0.2580 | 200 | 1.7987 | 35.5146 |
| 1.448 | 0.5160 | 400 | 1.1509 | 26.5801 |
| 1.1188 | 0.7741 | 600 | 1.0576 | 24.9471 |
| 0.9565 | 1.0321 | 800 | 0.9458 | 23.6783 |
| 0.7732 | 1.2901 | 1000 | 0.7574 | 18.7911 |
| 0.7109 | 1.5481 | 1200 | 0.6910 | 17.4636 |
| 0.6921 | 1.8062 | 1400 | 0.6866 | 18.4387 |
| 0.6118 | 2.0642 | 1600 | 0.6038 | 15.8071 |
| 0.5056 | 2.3222 | 1800 | 0.6301 | 16.7058 |
| 0.4852 | 2.5802 | 2000 | 0.5687 | 14.9495 |
| 0.4708 | 2.8383 | 2200 | 0.5481 | 15.1257 |
| 0.4406 | 3.0963 | 2400 | 0.4806 | 13.2049 |
| 0.3592 | 3.3543 | 2600 | 0.4766 | 12.5529 |
| 0.3367 | 3.6123 | 2800 | 0.4146 | 11.3076 |
| 0.3173 | 3.8703 | 3000 | 0.3976 | 10.9492 |
| 0.274 | 4.1284 | 3200 | 0.4133 | 10.8964 |
| 0.2338 | 4.3864 | 3400 | 0.3755 | 10.1797 |
| 0.227 | 4.6444 | 3600 | 0.3729 | 9.8978 |
| 0.2144 | 4.9024 | 3800 | 0.3586 | 9.6863 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1