wav2vec2-1b-Yfreq_pause_speed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1898
  • Cer: 31.1501

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
10.7019 0.2580 200 5.2871 100.0
2.9862 0.5160 400 2.5816 61.0021
1.4741 0.7741 600 2.3005 54.0120
1.1621 1.0321 800 1.7372 43.0569
0.9078 1.2901 1000 1.5138 38.3459
0.8152 1.5481 1200 1.5787 43.2566
0.7734 1.8062 1400 1.5237 40.7307
0.639 2.0642 1600 1.5034 37.8759
0.5611 2.3222 1800 1.4911 38.7277
0.5272 2.5802 2000 1.3679 37.0418
0.4739 2.8383 2200 1.5056 41.7469
0.4307 3.0963 2400 1.2907 34.7568
0.3732 3.3543 2600 1.4109 36.4250
0.3388 3.6123 2800 1.3857 37.1299
0.3089 3.8703 3000 1.2816 33.6760
0.2648 4.1284 3200 1.2267 32.7596
0.2299 4.3864 3400 1.2182 32.3896
0.2108 4.6444 3600 1.1818 31.1090
0.2055 4.9024 3800 1.1898 31.1501

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
7
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-Yfreq_pause_speed

Finetuned
(90)
this model