wav2vec2-1b-Yfreq_speed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8611
  • Cer: 22.6210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
14.3278 0.2580 200 3.6015 77.1323
2.1201 0.5160 400 1.8341 43.0627
1.4637 0.7741 600 1.6054 37.5587
1.2057 1.0321 800 1.3425 34.6805
0.9711 1.2901 1000 1.4205 35.2091
0.9025 1.5481 1200 1.3218 34.0872
0.8081 1.8062 1400 1.1956 30.2514
0.708 2.0642 1600 1.1235 28.9532
0.6006 2.3222 1800 1.2789 32.7655
0.5513 2.5802 2000 1.0509 27.1205
0.5326 2.8383 2200 1.1183 29.8990
0.4737 3.0963 2400 1.0453 26.8738
0.3829 3.3543 2600 0.9891 25.7460
0.3463 3.6123 2800 0.9118 23.8898
0.3313 3.8703 3000 0.9157 23.9074
0.2857 4.1284 3200 0.9297 24.4185
0.2432 4.3864 3400 0.8564 22.3273
0.2314 4.6444 3600 0.8760 22.5505
0.2125 4.9024 3800 0.8611 22.6210

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-Yfreq_speed

Finetuned
(100)
this model