|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-E30_pause |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-E30_pause |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0562 |
|
- Cer: 22.1393 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 30.6015 | 0.1289 | 200 | 5.2403 | 100.0 | |
|
| 4.9516 | 0.2579 | 400 | 4.7381 | 100.0 | |
|
| 4.8148 | 0.3868 | 600 | 4.6941 | 100.0 | |
|
| 4.7459 | 0.5158 | 800 | 4.5804 | 100.0 | |
|
| 4.7075 | 0.6447 | 1000 | 4.5734 | 100.0 | |
|
| 4.6607 | 0.7737 | 1200 | 4.5106 | 100.0 | |
|
| 4.3823 | 0.9026 | 1400 | 4.0717 | 96.7340 | |
|
| 3.3809 | 1.0316 | 1600 | 3.0736 | 55.4746 | |
|
| 2.7624 | 1.1605 | 1800 | 2.5641 | 45.3654 | |
|
| 2.4 | 1.2895 | 2000 | 2.3126 | 43.4269 | |
|
| 2.1103 | 1.4184 | 2200 | 2.0157 | 38.2343 | |
|
| 1.9096 | 1.5474 | 2400 | 1.8777 | 35.6086 | |
|
| 1.7178 | 1.6763 | 2600 | 1.7423 | 34.2164 | |
|
| 1.5487 | 1.8053 | 2800 | 1.5431 | 30.9504 | |
|
| 1.4451 | 1.9342 | 3000 | 1.4347 | 29.0002 | |
|
| 1.3031 | 2.0632 | 3200 | 1.3301 | 26.7975 | |
|
| 1.1895 | 2.1921 | 3400 | 1.2335 | 25.5110 | |
|
| 1.1376 | 2.3211 | 3600 | 1.2340 | 25.0352 | |
|
| 1.071 | 2.4500 | 3800 | 1.1303 | 23.8957 | |
|
| 1.0488 | 2.5790 | 4000 | 1.1066 | 22.7855 | |
|
| 1.0068 | 2.7079 | 4200 | 1.0825 | 22.4624 | |
|
| 0.9812 | 2.8369 | 4400 | 1.0719 | 22.3449 | |
|
| 0.9545 | 2.9658 | 4600 | 1.0562 | 22.1393 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|