wav2vec2-E50_freq_pause

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8196
  • Cer: 36.9713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
31.297 0.1289 200 5.4260 100.0
4.888 0.2579 400 4.7009 100.0
4.776 0.3868 600 5.0539 100.0
4.7621 0.5158 800 4.6373 100.0
4.6795 0.6447 1000 4.6474 100.0
4.6648 0.7737 1200 4.8580 100.0
4.6503 0.9026 1400 4.6060 100.0
4.5806 1.0316 1600 4.6559 98.0204
4.5544 1.1605 1800 4.4803 98.0909
4.4936 1.2895 2000 4.6766 98.0028
4.3834 1.4184 2200 4.3482 97.9088
4.2361 1.5474 2400 4.1447 80.8036
3.6904 1.6763 2600 3.3525 59.5277
3.1158 1.8053 2800 2.9366 53.3541
2.7611 1.9342 3000 2.6343 48.2202
2.527 2.0632 3200 2.3777 44.1788
2.323 2.1921 3400 2.1629 41.8351
2.18 2.3211 3600 2.1591 42.4695
2.0783 2.4500 3800 2.0168 39.9847
1.996 2.5790 4000 1.9937 40.1492
1.9336 2.7079 4200 1.8950 38.0815
1.8621 2.8369 4400 1.8627 37.7702
1.8707 2.9658 4600 1.8196 36.9713

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
317M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-E50_freq_pause

Finetuned
(524)
this model