|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-E50_speed |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-E50_speed |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7201 |
|
- Cer: 34.5747 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 38.2863 | 0.1289 | 200 | 4.9788 | 100.0 | |
|
| 4.8884 | 0.2579 | 400 | 4.7635 | 100.0 | |
|
| 4.7532 | 0.3868 | 600 | 4.6460 | 100.0 | |
|
| 4.7285 | 0.5158 | 800 | 4.6380 | 100.0 | |
|
| 4.6656 | 0.6447 | 1000 | 4.6877 | 100.0 | |
|
| 4.6484 | 0.7737 | 1200 | 4.6586 | 100.0 | |
|
| 4.6328 | 0.9026 | 1400 | 4.6110 | 100.0 | |
|
| 4.5589 | 1.0316 | 1600 | 4.5007 | 100.0 | |
|
| 4.4938 | 1.1605 | 1800 | 4.4103 | 98.0557 | |
|
| 4.3191 | 1.2895 | 2000 | 4.2620 | 95.5768 | |
|
| 3.9702 | 1.4184 | 2200 | 3.6438 | 68.0099 | |
|
| 3.3814 | 1.5474 | 2400 | 3.1348 | 60.4323 | |
|
| 2.9655 | 1.6763 | 2600 | 2.9093 | 59.5865 | |
|
| 2.7274 | 1.8053 | 2800 | 2.5505 | 51.1396 | |
|
| 2.5117 | 1.9342 | 3000 | 2.2604 | 46.0644 | |
|
| 2.3308 | 2.0632 | 3200 | 2.0918 | 42.4871 | |
|
| 2.1864 | 2.1921 | 3400 | 2.0284 | 41.0832 | |
|
| 2.0692 | 2.3211 | 3600 | 1.9906 | 40.9774 | |
|
| 2.0208 | 2.4500 | 3800 | 1.9112 | 38.6278 | |
|
| 1.9439 | 2.5790 | 4000 | 1.8649 | 38.3870 | |
|
| 1.8928 | 2.7079 | 4200 | 1.7703 | 35.7789 | |
|
| 1.8225 | 2.8369 | 4400 | 1.7312 | 34.8508 | |
|
| 1.8341 | 2.9658 | 4600 | 1.7201 | 34.5747 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|