wav2vec2-E50_speed_pause

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4049
  • Cer: 29.7227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
32.3933 0.1289 200 4.9500 100.0
4.8782 0.2579 400 4.6402 100.0
4.7485 0.3868 600 4.6460 100.0
4.7179 0.5158 800 4.5728 100.0
4.644 0.6447 1000 4.6080 99.0132
4.61 0.7737 1200 4.5600 98.2613
4.5722 0.9026 1400 4.5529 99.4537
4.4489 1.0316 1600 4.5026 98.1144
4.2793 1.1605 1800 4.1438 92.5928
3.6845 1.2895 2000 3.4651 61.3252
3.0089 1.4184 2200 2.6961 50.7049
2.6617 1.5474 2400 2.3715 46.2523
2.4745 1.6763 2600 2.2327 43.4739
2.2853 1.8053 2800 2.0575 41.7704
2.1079 1.9342 3000 1.9056 38.0639
1.9655 2.0632 3200 1.8005 35.8846
1.8115 2.1921 3400 1.6990 35.4088
1.7347 2.3211 3600 1.6111 33.3470
1.6653 2.4500 3800 1.5471 32.6833
1.5837 2.5790 4000 1.5360 31.9608
1.5514 2.7079 4200 1.4449 30.1398
1.4909 2.8369 4400 1.4166 29.7345
1.4908 2.9658 4600 1.4049 29.7227

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
317M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-E50_speed_pause

Finetuned
(524)
this model