File size: 2,841 Bytes
777e038
 
9a6f7e2
 
 
 
 
 
 
777e038
 
9a6f7e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-E50_speed_pause
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-E50_speed_pause

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4049
- Cer: 29.7227

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 32.3933       | 0.1289 | 200  | 4.9500          | 100.0   |
| 4.8782        | 0.2579 | 400  | 4.6402          | 100.0   |
| 4.7485        | 0.3868 | 600  | 4.6460          | 100.0   |
| 4.7179        | 0.5158 | 800  | 4.5728          | 100.0   |
| 4.644         | 0.6447 | 1000 | 4.6080          | 99.0132 |
| 4.61          | 0.7737 | 1200 | 4.5600          | 98.2613 |
| 4.5722        | 0.9026 | 1400 | 4.5529          | 99.4537 |
| 4.4489        | 1.0316 | 1600 | 4.5026          | 98.1144 |
| 4.2793        | 1.1605 | 1800 | 4.1438          | 92.5928 |
| 3.6845        | 1.2895 | 2000 | 3.4651          | 61.3252 |
| 3.0089        | 1.4184 | 2200 | 2.6961          | 50.7049 |
| 2.6617        | 1.5474 | 2400 | 2.3715          | 46.2523 |
| 2.4745        | 1.6763 | 2600 | 2.2327          | 43.4739 |
| 2.2853        | 1.8053 | 2800 | 2.0575          | 41.7704 |
| 2.1079        | 1.9342 | 3000 | 1.9056          | 38.0639 |
| 1.9655        | 2.0632 | 3200 | 1.8005          | 35.8846 |
| 1.8115        | 2.1921 | 3400 | 1.6990          | 35.4088 |
| 1.7347        | 2.3211 | 3600 | 1.6111          | 33.3470 |
| 1.6653        | 2.4500 | 3800 | 1.5471          | 32.6833 |
| 1.5837        | 2.5790 | 4000 | 1.5360          | 31.9608 |
| 1.5514        | 2.7079 | 4200 | 1.4449          | 30.1398 |
| 1.4909        | 2.8369 | 4400 | 1.4166          | 29.7345 |
| 1.4908        | 2.9658 | 4600 | 1.4049          | 29.7227 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1