|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-Y_speed2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-Y_speed2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9944 |
|
- Cer: 38.7688 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 43.7135 | 0.1289 | 200 | 5.1032 | 100.0 | |
|
| 5.0439 | 0.2579 | 400 | 4.6765 | 100.0 | |
|
| 4.8774 | 0.3868 | 600 | 4.6557 | 100.0 | |
|
| 4.8641 | 0.5158 | 800 | 4.6426 | 100.0 | |
|
| 4.7995 | 0.6447 | 1000 | 4.6472 | 100.0 | |
|
| 4.7762 | 0.7737 | 1200 | 4.6153 | 100.0 | |
|
| 4.7579 | 0.9026 | 1400 | 4.6154 | 100.0 | |
|
| 4.7082 | 1.0316 | 1600 | 4.6180 | 100.0 | |
|
| 4.6786 | 1.1605 | 1800 | 4.5371 | 100.0 | |
|
| 4.6438 | 1.2895 | 2000 | 4.5289 | 100.0 | |
|
| 4.5663 | 1.4184 | 2200 | 4.4416 | 100.0 | |
|
| 4.503 | 1.5474 | 2400 | 4.3983 | 99.3421 | |
|
| 4.2564 | 1.6763 | 2600 | 4.0853 | 82.7714 | |
|
| 3.7092 | 1.8053 | 2800 | 3.2871 | 61.8656 | |
|
| 3.071 | 1.9342 | 3000 | 2.9127 | 53.0663 | |
|
| 2.704 | 2.0632 | 3200 | 2.6764 | 49.4302 | |
|
| 2.4656 | 2.1921 | 3400 | 2.4448 | 45.2420 | |
|
| 2.2855 | 2.3211 | 3600 | 2.2835 | 42.6339 | |
|
| 2.1728 | 2.4500 | 3800 | 2.2042 | 42.0876 | |
|
| 2.0623 | 2.5790 | 4000 | 2.1021 | 39.8144 | |
|
| 1.9909 | 2.7079 | 4200 | 2.0544 | 39.5266 | |
|
| 1.9129 | 2.8369 | 4400 | 2.0083 | 38.7453 | |
|
| 1.9151 | 2.9658 | 4600 | 1.9944 | 38.7688 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|