metadata
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_adult_baseline
model-index:
- name: whisper-small-E30
results: []
whisper-small-E30
This model is a fine-tuned version of openai/whisper-small on the aihub old adult freq speed pause changed dataset. It achieves the following results on the evaluation set:
- Loss: 0.1691
- Cer: 4.5465
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.7214 | 0.2581 | 100 | 0.2507 | 5.9680 |
0.3927 | 0.5161 | 200 | 0.1969 | 5.3924 |
0.357 | 0.7742 | 300 | 0.1870 | 5.2044 |
0.2509 | 1.0310 | 400 | 0.1762 | 4.8520 |
0.1611 | 1.2890 | 500 | 0.1752 | 4.6346 |
0.159 | 1.5471 | 600 | 0.1713 | 4.5172 |
0.1578 | 1.8052 | 700 | 0.1691 | 4.5465 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0