metadata
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: fine-tuning-Phi2-with-webglm-qa-with-lora
results: []
fine-tuning-Phi2-with-webglm-qa-with-lora
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1475
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 300
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.2 | 10 | 7.7121 |
7.4808 | 0.4 | 20 | 4.3398 |
7.4808 | 0.6 | 30 | 0.6362 |
1.5296 | 0.8 | 40 | 0.5285 |
1.5296 | 1.0 | 50 | 0.4668 |
0.3883 | 1.2 | 60 | 0.4194 |
0.3883 | 1.39 | 70 | 0.3737 |
0.3482 | 1.59 | 80 | 0.3338 |
0.3482 | 1.79 | 90 | 0.3036 |
0.2296 | 1.99 | 100 | 0.2802 |
0.2296 | 2.19 | 110 | 0.2595 |
0.212 | 2.39 | 120 | 0.2452 |
0.212 | 2.59 | 130 | 0.2307 |
0.1943 | 2.79 | 140 | 0.2145 |
0.1943 | 2.99 | 150 | 0.2031 |
0.1635 | 3.19 | 160 | 0.1957 |
0.1635 | 3.39 | 170 | 0.1857 |
0.1543 | 3.59 | 180 | 0.1788 |
0.1543 | 3.78 | 190 | 0.1732 |
0.1492 | 3.98 | 200 | 0.1687 |
0.1492 | 4.18 | 210 | 0.1650 |
0.1327 | 4.38 | 220 | 0.1632 |
0.1327 | 4.58 | 230 | 0.1597 |
0.1359 | 4.78 | 240 | 0.1552 |
0.1359 | 4.98 | 250 | 0.1522 |
0.1367 | 5.18 | 260 | 0.1506 |
0.1367 | 5.38 | 270 | 0.1495 |
0.1204 | 5.58 | 280 | 0.1484 |
0.1204 | 5.78 | 290 | 0.1477 |
0.125 | 5.98 | 300 | 0.1475 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0