metadata
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: fine-tuning-Phi2-with-webglm-qa-with-lora
results: []
fine-tuning-Phi2-with-webglm-qa-with-lora
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1016
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.2 | 10 | 8.0315 |
No log | 0.4 | 20 | 6.2055 |
No log | 0.6 | 30 | 2.7735 |
No log | 0.8 | 40 | 0.6055 |
4.4745 | 1.0 | 50 | 0.5323 |
4.4745 | 1.2 | 60 | 0.4631 |
4.4745 | 1.39 | 70 | 0.4075 |
4.4745 | 1.59 | 80 | 0.3566 |
4.4745 | 1.79 | 90 | 0.3155 |
0.3331 | 1.99 | 100 | 0.2869 |
0.3331 | 2.19 | 110 | 0.2624 |
0.3331 | 2.39 | 120 | 0.2453 |
0.3331 | 2.59 | 130 | 0.2288 |
0.3331 | 2.79 | 140 | 0.2095 |
0.1947 | 2.99 | 150 | 0.1978 |
0.1947 | 3.19 | 160 | 0.1886 |
0.1947 | 3.39 | 170 | 0.1766 |
0.1947 | 3.59 | 180 | 0.1691 |
0.1947 | 3.78 | 190 | 0.1626 |
0.1486 | 3.98 | 200 | 0.1562 |
0.1486 | 4.18 | 210 | 0.1510 |
0.1486 | 4.38 | 220 | 0.1489 |
0.1486 | 4.58 | 230 | 0.1439 |
0.1486 | 4.78 | 240 | 0.1364 |
0.1232 | 4.98 | 250 | 0.1314 |
0.1232 | 5.18 | 260 | 0.1306 |
0.1232 | 5.38 | 270 | 0.1295 |
0.1232 | 5.58 | 280 | 0.1256 |
0.1232 | 5.78 | 290 | 0.1228 |
0.1084 | 5.98 | 300 | 0.1195 |
0.1084 | 6.18 | 310 | 0.1165 |
0.1084 | 6.37 | 320 | 0.1156 |
0.1084 | 6.57 | 330 | 0.1147 |
0.1084 | 6.77 | 340 | 0.1120 |
0.0964 | 6.97 | 350 | 0.1100 |
0.0964 | 7.17 | 360 | 0.1100 |
0.0964 | 7.37 | 370 | 0.1087 |
0.0964 | 7.57 | 380 | 0.1080 |
0.0964 | 7.77 | 390 | 0.1071 |
0.0905 | 7.97 | 400 | 0.1065 |
0.0905 | 8.17 | 410 | 0.1061 |
0.0905 | 8.37 | 420 | 0.1053 |
0.0905 | 8.57 | 430 | 0.1044 |
0.0905 | 8.76 | 440 | 0.1036 |
0.0843 | 8.96 | 450 | 0.1028 |
0.0843 | 9.16 | 460 | 0.1021 |
0.0843 | 9.36 | 470 | 0.1019 |
0.0843 | 9.56 | 480 | 0.1018 |
0.0843 | 9.76 | 490 | 0.1016 |
0.0819 | 9.96 | 500 | 0.1016 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0